Skip to main content

Analysis of ER-Phagy in Cancer Drug Resistance

  • Protocol
  • First Online:
Cancer Drug Resistance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2535))

Abstract

The ability of the cancer cells to survive hostile environment depends on their cellular stress response mechanisms. These mechanisms also help them to develop resistance to chemotherapies. Autophagy and more specifically organelle specific autophagy is one such adaptive mechanism that promotes drug resistance in cancer cells. Endoplasmic reticulum–specific autophagy or ER-phagy has been more recently described to overcome ER-stress through the degradation of damaged ER. ER-resident proteins such as FAM134B act as ER-phagy receptors to specifically target damaged ER for degradation through autophagy. Moreover, we had recently deciphered that ER-phagy facilitates cancer cell survival during hypoxic stress and we predict that this process could play a critical role in the development of drug resistance in cancer cells. Therefore, here, we provide a lay description of how ER-phagy could be investigated biochemically by Western blot analysis and silencing ER-phagy receptor genes using small interfering RNAs (siRNA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bahar E, Kim J-Y, Yoon H (2019) Chemotherapy resistance explained through endoplasmic reticulum stress-dependent signaling. Cancers 11(3):338

    Article  CAS  Google Scholar 

  2. Anding AL, Baehrecke EH (2017) Cleaning house: selective autophagy of organelles. Dev Cell 41(1):10–22

    Article  CAS  Google Scholar 

  3. White E, DiPaola RS (2009) The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 15(17):5308–5316

    Article  Google Scholar 

  4. Li Y-Y, Feun LG, Thongkum A, Tu C-H, Chen S-M, Wangpaichitr M, Wu C, Kuo MT, Savaraj N (2017) Autophagic mechanism in anti-cancer immunity: its pros and cons for cancer therapy. Int J Mol Sci 18(6):1297

    Google Scholar 

  5. White E (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12(6):401–410

    Article  CAS  Google Scholar 

  6. Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7(12):961–967

    Article  CAS  Google Scholar 

  7. Rohwer N, Lobitz S, Daskalow K, Jöns T, Vieth M, Schlag P, Kemmner W, Wiedenmann B, Cramer T, Höcker M (2009) HIF-1α determines the metastatic potential of gastric cancer cells. Br J Cancer 100(5):772–781

    Google Scholar 

  8. Giatromanolaki A, Koukourakis M, Sivridis E, Turley H, Talks K, Pezzella F, Gatter K, Harris A (2001) Relation of hypoxia inducible factor 1 α and 2 α in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer 85(6):881–890

    Google Scholar 

  9. Bos R, Van der Groep P, Greijer AE, Shvarts A, Meijer S, Pinedo HM, Semenza GL, Van Diest PJ, Van der Wall E (2003) Levels of hypoxia-inducible factor-1α independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer 97(6):1573–1581

    Google Scholar 

  10. Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11(12):1433–1437

    Google Scholar 

  11. Ylä-Anttila P, Vihinen H, Jokitalo E, Eskelinen E-L (2009) 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5(8):1180–1185

    Google Scholar 

  12. Grumati P, Dikic I, Stolz A (2018) ER-phagy at a glance. J Cell Sci 131(17):jcs217364

    Article  Google Scholar 

  13. Khaminets A, Heinrich T, Mari M, Grumati P, Huebner AK, Akutsu M, Liebmann L, Stolz A, Nietzsche S, Koch N (2015) Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522(7556):354–358

    Google Scholar 

  14. Grumati P, Morozzi G, Hölper S, Mari M, Harwardt M-LI, Yan R, Müller S, Reggiori F, Heilemann M, Dikic I (2017) Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy. Elife 6:e25555

    Google Scholar 

  15. Fumagalli F, Noack J, Bergmann TJ, Cebollero E, Pisoni GB, Fasana E, Fregno I, Galli C, Loi M, Soldà T (2016) Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery. Nat Cell Biol 18(11):1173–1184

    Google Scholar 

  16. Smith MD, Harley ME, Kemp AJ, Wills J, Lee M, Arends M, von Kriegsheim A, Behrends C, Wilkinson S (2018) CCPG1 is a non-canonical autophagy cargo receptor essential for ER-phagy and pancreatic ER proteostasis. Dev Cell 44(2):217–232. e211

    Google Scholar 

  17. Chen Q, Xiao Y, Chai P, Zheng P, Teng J, Chen J (2019) ATL3 is a tubular ER-phagy receptor for GABARAP-mediated selective autophagy. Curr Biol 29(5):846–855. e846

    Google Scholar 

  18. An H, Ordureau A, Paulo JA, Shoemaker CJ, Denic V, Harper JW (2019) TEX264 is an endoplasmic reticulum-resident ATG8-interacting protein critical for ER remodeling during nutrient stress. Mol Cell 74(5):891–908. e810

    Google Scholar 

  19. Chino H, Hatta T, Natsume T, Mizushima N (2019) Intrinsically disordered protein TEX264 mediates ER-phagy. Mol Cell 74(5):909–921. e906

    Google Scholar 

  20. Delorme-Axford E, Popelka H, Klionsky DJ (2019) TEX264 is a major receptor for mammalian reticulophagy. Taylor & Francis, Oxfordshire

    Book  Google Scholar 

  21. Nthiga TM, Kumar Shrestha B, Sjøttem E, Bruun JA, Bowitz Larsen K, Bhujabal Z, Lamark T, Johansen T (2020) CALCOCO 1 acts with VAMP-associated proteins to mediate ER-phagy. EMBO J 39(15):e103649

    Google Scholar 

  22. Bernales S, McDonald KL, Walter P (2006) Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4(12):e423

    Article  Google Scholar 

  23. Hübner CA, Dikic I (2020) ER-phagy and human diseases. Cell Death Differ 27(3):833–842

    Article  Google Scholar 

  24. Islam F, Gopalan V, AKY L (2018) RETREG1 (FAM134B): a new player in human diseases: 15 years after the discovery in cancer. J Cell Physiol 233(6):4479–4489

    Article  CAS  Google Scholar 

  25. Chipurupalli S, Ganesan R, Martini G, Mele L, Reggio A, Esposito M, Kannan E, Namasivayam V, Grumati P, Desiderio V, Robinson N (2022) Cancer cells adapt FAM134B/BiP mediated ER-phagy to survive hypoxic stress. Cell Death Dis 13(4):357

    Google Scholar 

Download references

Acknowledgments

Research in NR’s laboratory is supported by funds from Centre for Cancer Biology, University of South Australia, and the Neurosurgical Research Foundation (NRF), Australia. The authors also acknowledge the support to SC from Department of Science and Technology, Government of India (SR/WOS-A/LS-21/2016) under Women Scientist Scheme. The authors also acknowledge that the graphical representations were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmal Robinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chipurupalli, S., Desiderio, V., Robinson, N. (2022). Analysis of ER-Phagy in Cancer Drug Resistance. In: Baiocchi, M. (eds) Cancer Drug Resistance. Methods in Molecular Biology, vol 2535. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2513-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2513-2_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2512-5

  • Online ISBN: 978-1-0716-2513-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics