Skip to main content

Bottom-Up Analysis of Proteins by Peptide Mass Fingerprinting with tCITP-CZE-ESI-TOF MS After Tryptic Digest

  • Protocol
  • First Online:
Capillary Electrophoresis-Mass Spectrometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2531))

Abstract

The identification of proteins in samples of moderate to complex composition is primarily done by bottom-up approaches. Therefore, proteins are enzymatically digested, mostly by trypsin, and the resulting peptides are then separated prior to their transfer to a mass spectrometer. The following protocol portrays a bottom-up method, which was optimized for the application of CZE-ESI-TOF MS. Protein denaturation is achieved by addition of 2,2,2-trifluoroethanol (TFE) and heat treatment. Afterwards, disulfide bonds are reduced with tris-(2-carboxyethyl)phosphine (TCEP) and subsequently alkylated with iodoacetamide (IAA). The tryptic digest is performed in an ammonium bicarbonate buffer at pH 8.0. The digested protein sample is then concentrated in-capillary by transient capillary isotachophoresis (tCITP) with subsequent CZE separation of tryptic peptides in an acidic background electrolyte. Hyphenation to a time-of-flight (TOF) mass spectrometer is carried out by a triple-tube coaxial sheath flow interface, which uses electrospray ionization (ESI). Peptide identification is done by peptide mass fingerprinting (PMF). The protocol is outlined exemplarily for a model protein, i.e., bovine β-lactoglobulin A.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bogdanov B, Smith RD (2005) Proteomics by FTICR mass spectrometry: top down and bottom up. Mass Spectrom Rev 24(2):168–200. https://doi.org/10.1002/mas.20015

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Y, Fonslow BR, Shan B, Baek M-C, Yates JR 3rd (2013) Protein analysis by shotgun/bottom-up proteomics. Chem Rev 113(4):2343–2394. https://doi.org/10.1021/cr3003533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sarg B, Faserl K, Kremser L, Halfinger B, Sebastiano R, Lindner HH (2013) Comparing and combining CE-ESI-MS and nano-LC-ESI-MS for the characterization of post-translationally modified histones. Mol Cell Proteomics 12:2640–2656. https://doi.org/10.1074/mcp.M112.024109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Righetti PG, Sebastiano R, Citterio A (2013) Capillary electrophoresis and isoelectric focusing in peptide and protein analysis. Proteomics 13(2):325–340. https://doi.org/10.1002/pmic.201200378

    Article  CAS  PubMed  Google Scholar 

  5. López-Ferrer D, Cañas B, Vázquez J, Lodeiro C, Rial-Otero R, Moura I, Capelo JL (2006) Sample treatment for protein identification by mass spectrometry-based techniques. TrAC Trends Anal Chem 25(10):996–1005. https://doi.org/10.1016/j.trac.2006.05.015

    Article  CAS  Google Scholar 

  6. Stutz H (2009) Protein attachment onto silica surfaces—a survey of molecular fundamentals, resulting effects and novel preventive strategies in CE. Electrophoresis 30(12):2032–2061. https://doi.org/10.1002/elps.200900015

    Article  CAS  PubMed  Google Scholar 

  7. Dick LW Jr, Mahon D, Qiu D, Cheng K-C (2009) Peptide mapping of therapeutic monoclonal antibodies: improvements for increased speed and fewer artifacts. J Chromatogr B 877(3):230–236. https://doi.org/10.1016/j.jchromb.2008.12.009

    Article  CAS  Google Scholar 

  8. Ogorzalek Loo RR, Hayes R, Yang Y, Hung F, Ramachandran P, Kim N, Gunsalus R, Loo JA (2005) Top-down, bottom-up, and side-to-side proteomics with virtual 2-D gels. Int J Mass Spectrom 240(3):317–325. https://doi.org/10.1016/j.ijms.2004.10.013

    Article  CAS  Google Scholar 

  9. An Y, Cooper JW, Balgley BM, Lee CS (2006) Selective enrichment and ultrasensitive identification of trace peptides in proteome analysis using transient capillary isotachophoresis/zone electrophoresis coupled with nano-ESI-MS. Electrophoresis 27(18):3599–3608. https://doi.org/10.1002/elps.200600093

    Article  CAS  PubMed  Google Scholar 

  10. Breadmore MC (2007) Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips. Electrophoresis 28(1–2):254–281. https://doi.org/10.1002/elps.200600463

    Article  CAS  PubMed  Google Scholar 

  11. Veraart JR, Lingeman H, Brinkman UAT (1999) Coupling of biological sample handling and capillary electrophoresis. J Chromatogr A 856(1–2):483–514. https://doi.org/10.1016/S0021-9673(99)00588-9

    Article  CAS  PubMed  Google Scholar 

  12. Stutz H, Bordin G, Rodriguez AR (2004) Capillary zone electrophoresis of metal-binding proteins in formic acid with UV- and mass spectrometric detection using cationic transient capillary isotachophoresis for preconcentration. Electrophoresis 25(7–8):1071–1089. https://doi.org/10.1002/elps.200305806

    Article  CAS  PubMed  Google Scholar 

  13. Hochwallner H, Schulmeister U, Swoboda I, Spitzauer S, Valenta R (2014) Cow’s milk allergy: from allergens to new forms of diagnosis, therapy and prevention. Methods (San Diego, CA) 66(1):22–33. https://doi.org/10.1016/j.ymeth.2013.08.005

    Article  CAS  Google Scholar 

  14. Ross GA (2001) Capillary electrophoresis-mass spectrometry: practical implementations and applications. LC GC Europe (January). p. 45–49

    Google Scholar 

  15. Stutz H, Bordin G, Rodriguez AR (2003) Separation of selected metal-binding proteins with capillary zone electrophoresis. Anal Chim Acta 477(1):1–19. https://doi.org/10.1016/S0003-2670(02)01403-4

    Article  CAS  Google Scholar 

  16. Keil-Dlouhá V, Zylber N, Imhoff JM, Tong NT, Keil B (1971) Proteolytic activity of pseudotrypsin. FEBS Lett 16(4):291–295. https://doi.org/10.1016/0014-5793(71)80373-3

    Article  PubMed  Google Scholar 

  17. Rice RH, Means GE, Brown WD (1977) Stabilization of bovine trypsin by reductive methylation. Biochim Biophys Acta Protein Struct 492(2):316–321. https://doi.org/10.1016/0005-2795(77)90082-4

    Article  CAS  Google Scholar 

  18. Heissel S, Frederiksen SJ, Bunkenborg J, Højrup P (2019) Enhanced trypsin on a budget: stabilization, purification and high-temperature application of inexpensive commercial trypsin for proteomics applications. PLoS One 14(6):e0218374. https://doi.org/10.1371/journal.pone.0218374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vandermarliere E, Mueller M, Martens L (2013) Getting intimate with trypsin, the leading protease in proteomics. Mass Spectrom Rev 32(6):453–465. https://doi.org/10.1002/mas.21376

    Article  CAS  PubMed  Google Scholar 

  20. Shiraki K, Nishikawa K, Goto Y (1995) Trifluoroethanol-induced stabilization of the α-helical structure of β-Lactoglobulin: implication for non-hierarchical protein folding. J Mol Biol 245(2):180–194. https://doi.org/10.1006/jmbi.1994.0015

    Article  CAS  PubMed  Google Scholar 

  21. Lundell N, Schreitmüller T (1999) Sample preparation for peptide mapping—a pharmaceutical quality-control perspective. Anal Biochem 266(1):31–47. https://doi.org/10.1006/abio.1998.2919

    Article  CAS  PubMed  Google Scholar 

  22. Finehout EJ, Cantor JR, Lee KH (2005) Kinetic characterization of sequencing grade modified trypsin. Proteomics 5(9):2319–2321. https://doi.org/10.1002/pmic.200401268

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was done within the Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization. The financial support by the Austrian Federal Ministry for Digital and Economic Affairs, the National Foundation of Research, Technology, and Development, and a Start-up Grant of the Province of Salzburg is gratefully acknowledged. Dr. Lorenz Stock (former member of the CD-laboratory) is gratefully acknowledged for his scientific and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanno Stutz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Segl, M., Stutz, H. (2022). Bottom-Up Analysis of Proteins by Peptide Mass Fingerprinting with tCITP-CZE-ESI-TOF MS After Tryptic Digest. In: Neusüß, C., Jooß, K. (eds) Capillary Electrophoresis-Mass Spectrometry . Methods in Molecular Biology, vol 2531. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2493-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2493-7_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2492-0

  • Online ISBN: 978-1-0716-2493-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics