Skip to main content

Imaging Infection by Vector-Borne Protozoan Parasites Using Whole-Mouse Bioluminescence

  • Protocol
  • First Online:
Bioluminescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2524))

Abstract

Vector-borne protozoan parasites such as Plasmodium spp. Leishmania spp. and Trypanosoma brucei are responsible for several serious diseases. Significant advances in parasitology have been made using rodent models combined with live imaging techniques, including whole-mouse bioluminescence imaging (BLI). This technique has been applied to investigate parasite dissemination, infectivity, and growth. It has also been used in drug and vaccine testing. This chapter focuses on the methods that utilize whole-mouse BLI to (i) evaluate the homing and infectivity of Plasmodium berghei sporozoites; (ii) conduct in vivo testing of promising chemical entities against Leishmania infantum infection; and (iii) study molecular mechanisms of host susceptibility to Trypanosoma brucei brucei infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO (2020) Fact sheets: vector borne diseases. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases. Accessed 13 Aug 2021

    Google Scholar 

  2. Büscher P, Cecchi G, Jamonneau V et al (2017) Human African trypanosomiasis. Lancet 390:2397–2409

    Article  Google Scholar 

  3. Ashley EA, Pyae Phyo A, Woodrow CJ (2018) Malaria. Lancet 391:1608–1621

    Article  Google Scholar 

  4. Burza S, Croft SL, Boelaert M (2018) Leishmaniasis. Lancet 392:951–970

    Article  Google Scholar 

  5. De Niz M, Spadin F, Marti M et al (2019) Toolbox for in vivo imaging of host-parasite interactions at multiple scales. Trends Parasitol 35:193–212

    Article  Google Scholar 

  6. McLatchie AP, Burrell-Saward H, Myburgh E et al (2013) Highly sensitive in vivo imaging of Trypanosoma brucei expressing “red-shifted” luciferase. PLoS Negl Trop Dis 7:e2571

    Article  Google Scholar 

  7. Tavares J, Costa DM, Teixeira AR et al (2017) In vivo imaging of pathogen homing to the host tissues. Methods 127:37–44

    Article  CAS  Google Scholar 

  8. Costa DM, Sá M, Teixeira AR et al (2018) TRSP is dispensable for the Plasmodium pre-erythrocytic phase. Sci Rep 8:15101

    Article  Google Scholar 

  9. Neves JV, Gomes AC, Costa DM et al (2021) A role for hepcidin in the anemia caused by Trypanosoma brucei infection. Haematologica 106:806–818

    Article  CAS  Google Scholar 

  10. Graça NA, Gaspar L, Costa DM et al (2016) Activity of bisnaphthalimidopropyl derivatives against Trypanosoma brucei. Antimicrob Agents Chemother 60:2532–2536

    Article  Google Scholar 

  11. Aliprandini E, Tavares J, Panatieri RH et al (2018) Cytotoxic anti-circumsporozoite antibodies target malaria sporozoites in the host skin. Nat Microbiol 3:1224–1233

    Article  CAS  Google Scholar 

  12. Álvarez-Velilla R, Gutiérrez-Corbo MDC, Punzón C et al (2019) A chronic bioluminescent model of experimental visceral leishmaniasis for accelerating drug discovery. PLoS Negl Trop Dis 13:e0007133

    Article  Google Scholar 

  13. Costa DM, Cecílio P, Santarém N et al (2019) Murine infection with bioluminescent Leishmania infantum axenic amastigotes applied to drug discovery. Sci Rep 9:18989

    Article  Google Scholar 

  14. Ong HB, Clare S, Roberts AJ et al (2020) Establishment, optimisation and quantitation of a bioluminescent murine infection model of visceral leishmaniasis for systematic vaccine screening. Sci Rep 10:4689

    Article  CAS  Google Scholar 

  15. Ménard R, Tavares J, Cockburn I et al (2013) Looking under the skin: the first steps in malarial infection and immunity. Nat Rev Microbiol 11:701–712

    Article  Google Scholar 

  16. Braks J, Aime E, Spaccapelo R et al (2013) Bioluminescence imaging of P. berghei schizont sequestration in rodents. Methods Mol Biol 923:353–368

    Article  CAS  Google Scholar 

  17. Buffet PA, Sulahian A, Garin YJ et al (1995) Culture microtitration: a sensitive method for quantifying Leishmania infantum in tissues of infected mice. Antimicrob Agents Chemother 39:2167–2168

    Article  CAS  Google Scholar 

  18. Nicolas L, Prina E, Lang T et al (2002) Real-time PCR for detection and quantitation of Leishmania in mouse tissues. J Clin Microbiol 40:1666–1669

    Article  CAS  Google Scholar 

  19. Cunha J, Carrillo E, Sánchez C et al (2013) Characterization of the biology and infectivity of Leishmania infantum viscerotropic and dermotropic strains isolated from HIV+ and HIV patients in the murine model of visceral leishmaniasis. Parasit Vectors 6:122

    Article  CAS  Google Scholar 

  20. Michel G, Ferrua B, Lang T et al (2011) Luciferase-expressing Leishmania infantum allows the monitoring of amastigote population size, in vivo, ex vivo and in vitro. PLoS Negl Trop Dis 5:e1323

    Article  Google Scholar 

  21. Reimão JQ, Oliveira JC, Trinconi CT et al (2015) Generation of luciferase-expressing Leishmania infantum chagasi and assessment of miltefosine efficacy in infected hamsters through bioimaging. PLoS Negl Trop Dis 9:e0003556

    Article  Google Scholar 

  22. Melo GD, Goyard S, Lecoeur H et al (2017) New insights into experimental visceral leishmaniasis: real-time in vivo imaging of Leishmania donovani virulence. PLoS Negl Trop Dis 11:e0005924

    Article  Google Scholar 

  23. Khare S, Nagle AS, Biggart A et al (2016) Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature 537:229–233

    Article  CAS  Google Scholar 

  24. Ritchie R, Barrett MP, Mottram JC et al (2020) In vivo bioluminescence imaging to assess compound efficacy against Trypanosoma brucei. In: Michels PAM, Ginger ML, Zilberstein D (eds) Trypanosomatids: methods and protocols, 1st edn. Humana Press, New York, pp 801–817

    Chapter  Google Scholar 

  25. Franke-Fayard B, Djokovic D, Dooren MW et al (2008) Simple and sensitive antimalarial drug screening in vitro and in vivo using transgenic luciferase expressing Plasmodium berghei parasites. Int J Parasitol 38:1651–1662

    Article  CAS  Google Scholar 

  26. Sereno D, Roy G, Lemesre JL et al (2001) DNA transformation of Leishmania infantum axenic amastigotes and their use in drug screening. Antimicrob Agents Chemother 45:1168–1173

    Article  CAS  Google Scholar 

  27. Sacks DL, Melby PC (2015) Animal models for the analysis of immune responses to leishmaniasis. Curr Protoc Immunol 108:19.2.1–19.2.24

    Article  Google Scholar 

Download references

Acknowledgments

We apologize to many researchers in this field whose work we have not been able to cite directly because of the limits of space. This work was supported by funds from the Fundação para a Ciência e Tecnologia (FCT)/Ministério da Educação e Ciência (MEC) co-funded by the European Regional Development Fund (FEDER) under the Partnership agreement PT2020, through the Research Unit No. 4293, and the grant PTDC/SAU-PAR/31340/2017.

JT is an Investigator funded by national funds through FCT and co-funded through FEDER Grant CEECIND/02362/2017. DMC and MS are funded by the FCT individual fellowships SFRH/ BD/123734/2016 and SFRH/BD/133485/2017, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Tavares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sá, M., Costa, D.M., Tavares, J. (2022). Imaging Infection by Vector-Borne Protozoan Parasites Using Whole-Mouse Bioluminescence. In: Kim, SB. (eds) Bioluminescence. Methods in Molecular Biology, vol 2524. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2453-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2453-1_29

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2452-4

  • Online ISBN: 978-1-0716-2453-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics