Skip to main content

Proteolytic Activity Assays in Haloarchaea

  • Protocol
  • First Online:
Archaea

Abstract

Extreme halophilic archaea (haloarchaea) have adapted their physiology and biomolecules to thrive in saline environments (>2 M NaCl). Many haloarchaea produce extracellular hydrolases (including proteases) with potential biotechnological applications, which require unusual high salt concentrations to attain their function and maintain their stability. These conditions restrict many of the standard methods used to study these enzymes such as activity determination and/or protein purification. Here, we describe basic protocols to detect and measure extracellular proteolytic activity in haloarchaea including casein hydrolysis on agar plates, quantitative proteolytic activity determination by the azocasein assay and gelatin zymography in presence of the compatible solute glycine-betaine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Oren A (2013) Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Front Microbiol 4:315–321

    Article  Google Scholar 

  2. Paul S, Bag SK, Das S, Harvill ET, Dutta C (2008) Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes. Genome Biol 9:R70

    Article  Google Scholar 

  3. DasSarma S, DasSarma P (2015) Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol 25:120–126

    Article  CAS  Google Scholar 

  4. Souza TACB, Okamoto DN, Ruiz DM, Oliveira LCG, Kondo MY, Tersario ILS, Juliano L, De Castro RE, Gouvea IE, Murakami MT (2012) Correlation between catalysis and tertiary structure arrangement in an archaeal halophilic subtilase. Biochimie 94:798–805

    Article  CAS  Google Scholar 

  5. Sinsha R, Khare SK (2014) Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation. Front Microbiol 5:165

    Google Scholar 

  6. De Castro RE, Maupin-Furlow JA, Giménez MI, Herrera Seitz MK, Sánchez JJ (2006) Haloarchaeal proteases and proteolytic systems. FEMS Microbiol Rev 30:17–35

    Article  Google Scholar 

  7. Bidle KA, Haramaty L, Baggett N, Nannen J, Bidle KD (2010) Tantalizing evidence for caspase-like protein expression and activity in the cellular stress response of archaea. Environ Microbiol 12:1161–1172

    Article  CAS  Google Scholar 

  8. Nercessian D, Di Meglio L, De Castro R, Paggi R (2015) Exploring the multiple biotechnological potential of halophilic microorganisms isolated from two Argentinean salterns. Extremophiles 19:1133–1143

    Article  CAS  Google Scholar 

  9. De Castro RE, Ruiz DM, Giménez MI, Paggi RA, Silveyra MX, Maupin-Furlow JA (2008) Gene cloning and heterologous synthesis of a haloalkaliphilic extracellular protease of Natrialba magadii (Nep). Extremophiles 12:677–687

    Article  Google Scholar 

  10. Ruiz DM, Paggi RA, Giménez MI, De Castro RE (2012) Autocatalytic maturation of the Tat-dependent halophilic subtilase NEP produced by the archaeon Natrialba magadii. J Bacteriol 194:3700–3707

    Article  CAS  Google Scholar 

  11. Coêlho DF, Saturnino TP, Freitas Fernandes F, Gava Mazzola P, Silveira E, Basile Tambourgi E (2016) Azocasein substrate for determination of proteolytic activity: reexamining a traditional method using bromelain samples. Biomed Res Int 2016:8409183, 6 pages

    Article  Google Scholar 

  12. Giménez MI, Studdert CA, Sánchez JJ, De Castro RE (2000) Extracellular serine protease of Natrialba magadii: purification and biochemical characterization. Extremophiles 4:181–188

    Article  Google Scholar 

  13. Xu Z, Du X, Li T, Gan F, Tang B et al (2011) Functional insight into the C-terminal extension of Halolysin SptA from haloarchaeon Natrinema sp. J7. PLoS One 6:e23562

    Article  CAS  Google Scholar 

  14. Zhang Y, Wang M, Du X, Tang W, Zhang L, Li M, Wang J, Tang B, Tang X-F (2014) Chitin accelerates activation of a novel haloarchaeal serine protease that deproteinizes chitin-containing biomass. Appl Environ Microbiol 80:5698–5708

    Article  Google Scholar 

  15. Du X, Li M, Tang W, Zhang Y, Zhang L, Wang L, Li T, Tang B, Tang X-F (2011) Secretion of Tat-dependent halolysin SptA capable of autocatalytic activation and its relation to haloarchaeal growth. Mol Microbiol 96:548–565

    Article  Google Scholar 

  16. Imhoff JF, Rahn T, Künzel S, Keller A, Neulinger SC (2021) Osmotic adaptation and compatible solute biosynthesis of phototrophic bacteria as revealed from genome analyses. Microorganisms 9:46–78

    Article  CAS  Google Scholar 

  17. Cadenas Q, Engel PC (1994) Activity staining of halophilic enzymes: substitution of salt with a zwitterion in non-denaturing electrophoresis. Biochem Mol Biol Int 33:785–792

    CAS  PubMed  Google Scholar 

  18. Ibrahim I, Engel PC (2016) Substitution of salt with a zwitterion, betaine, in native-PAGE, SDS-PAGE and affinity chromatography. Malaysian J Biochem Mol Biol 1:11–15

    Google Scholar 

  19. Studdert CA, De Castro RE, Herrera Seitz K, Sánchez JJ (1997) Detection and preliminary characterization of extracellular proteolytic activities of the haloalkaliphilic archaeon Natronococcus occultus. Arch Microbiol 168:532–535

    Article  CAS  Google Scholar 

  20. Herrera Seitz MK, Studdert C, Sánchez JJ, De Castro R (1997) Intracellular proteolytic activity of the haloalkaliphilic archaeon Natronococcus occultus. Effect of starvation. J Basic Microbiol 37:313–322

    Article  CAS  Google Scholar 

  21. Studdert CA, Herrera Seitz MK, Plasencia Gil MI, Sánchez JJ, De Castro RE (2001) Purification and biochemical characterization of the haloalkaliphilic archaeon Natronococcus occultus extracellular serine protease. J Basic Microbiol 41:375–383

    Article  CAS  Google Scholar 

  22. Kirtley ME, Koshland DE Jr (1972) Environmentally sensitive groups attached to proteins. Methods Enzymol 26:578–601

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosana Esther De Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Paggi, R.A., Giménez, M.I., De Castro, R.E. (2022). Proteolytic Activity Assays in Haloarchaea. In: Ferreira-Cerca, S. (eds) Archaea. Methods in Molecular Biology, vol 2522. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2445-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2445-6_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2444-9

  • Online ISBN: 978-1-0716-2445-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics