Skip to main content

Telomere Aberration Detection by PNA FISH Probe

  • Protocol
  • First Online:
Chromosome Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2519))

Abstract

Telomere is a structure of the end cap of chromosomes. Telomere gets shorter as cell aging and progressing cell division. Shorter telomere may cause telomere fusion, thus inducing genomic instability. Telomere dysfunction can be visualized by PNA FISH probe against telomere repeat sequence (TTAGGG)n. PNA probes have higher hybridization affinity than DNA probes. The traditional FISH or modified FISH protocol can stain telomere relatively easier than whole-chromosome painting probes. This chapter introduces PNA telomere FISH protocol to visualize telomere signals on metaphase chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blackburn EH, Gall JG (1978) A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol 120(1):33–53. https://doi.org/10.1016/0022-2836(78)90294-2

    Article  CAS  PubMed  Google Scholar 

  2. Muller HJ (1938) The remaking of chromosomes. Collecting Net 13:182–198

    Google Scholar 

  3. McClintock B (1941) The stability of broken ends of chromosomes in Zea Mays. Genetics 26(2):234–282

    Article  CAS  Google Scholar 

  4. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621. https://doi.org/10.1016/0014-4827(61)90192-6

    Article  CAS  PubMed  Google Scholar 

  5. Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43(2 Pt 1):405–413. https://doi.org/10.1016/0092-8674(85)90170-9

    Article  CAS  PubMed  Google Scholar 

  6. Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR (1995) Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 14(17):4240–4248

    Article  CAS  Google Scholar 

  7. Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR (1997) Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med 3(11):1271–1274. https://doi.org/10.1038/nm1197-1271

    Article  CAS  PubMed  Google Scholar 

  8. van Steensel B, Smogorzewska A, de Lange T (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92(3):401–413. https://doi.org/10.1016/s0092-8674(00)80932-0

    Article  PubMed  Google Scholar 

  9. Riboni R, Casati A, Nardo T, Zaccaro E, Ferretti L, Nuzzo F, Mondello C (1997) Telomeric fusions in cultured human fibroblasts as a source of genomic instability. Cancer Genet Cytogenet 95(2):130–136. https://doi.org/10.1016/s0165-4608(96)00248-8

    Article  CAS  PubMed  Google Scholar 

  10. Bailey SM, Meyne J, Chen DJ, Kurimasa A, Li GC, Lehnert BE, Goodwin EH (1999) DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes. Proc Natl Acad Sci U S A 96(26):14899–14904. https://doi.org/10.1073/pnas.96.26.14899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bailey SM, Cornforth MN, Kurimasa A, Chen DJ, Goodwin EH (2001) Strand-specific postreplicative processing of mammalian telomeres. Science 293(5539):2462–2465. https://doi.org/10.1126/science.1062560

    Article  CAS  PubMed  Google Scholar 

  12. Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu JR (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A 85(18):6622–6626

    Article  CAS  Google Scholar 

  13. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254(5037):1497–1500. https://doi.org/10.1126/science.1962210

    Article  CAS  PubMed  Google Scholar 

  14. Maeda J, Yurkon CR, Fujisawa H, Kaneko M, Genet SC, Roybal EJ, Rota GW, Saffer ER, Rose BJ, Hanneman WH, Thamm DH, Kato TA (2012) Genomic instability and telomere fusion of canine osteosarcoma cells. PLoS One 7(8):e43355. https://doi.org/10.1371/journal.pone.0043355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takamitsu A. Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kato, T.A. (2023). Telomere Aberration Detection by PNA FISH Probe. In: Gotoh, E. (eds) Chromosome Analysis. Methods in Molecular Biology, vol 2519. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2433-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2433-3_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2432-6

  • Online ISBN: 978-1-0716-2433-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics