Skip to main content

Naturally Derived Biomaterials: An Overview

  • Protocol
  • First Online:
Tissue Scaffolds

Abstract

The extracellular matrix (ECM) is a complex network with multiple functions during tissue regeneration. Precisely, the properties of ECM have been thoroughly used in tissue engineering and regenerative medicine research, aiming to restore the function of damaged or dysfunctional tissues. One of the most promising techniques for tissue and organ regeneration is decellularization, in which the ECM is isolated from its native tissues in order to produce a natural scaffold. The ECM ideally retains its inherent structural, biochemical, and biomechanical cues and can be decellularized to produce a functional tissue or organ. While decellularization can be accomplished using chemical and enzymatic, physical, or a combination of these methods, each strategy has its benefits and drawbacks. A biological scaffold from ECM can be produced by a variety of decellularization methods whose caveat consists in efficiently eliminating cells from the treated tissue. Preservation of the ECM matrix ultrastructure is highly desirable because of its unique architecture, contained growth factors, and decreased immunological response. All of these properties provide attachment sites and adequate environment for the cells colonizing this scaffold, reconstituting the decellularized organ. Tissue decellularization is gaining momentum as a technique to obtain potentially implantable decellularized extracellular matrix (dECM) with well-preserved key components. The chapter briefly describes different decellularization methods, evaluates these protocols, and compares the advantages and disadvantages of these methods in terms of their ability to retain desired ECM characteristics for particular tissues and organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ratner BD (2006) Biomaterials tutorial: an introduction to biomaterials. University of Washington Engineered Biomaterials http://www.uweb.engr.washington.edu/research/tutorials/introbiomat.html. Accessed on 5th June 2007

  2. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (1996) Biomaterials science: An introduction to materials in medicine. Academic Press, New York, pp 1–10, 84–94

    Book  Google Scholar 

  3. Badylak S, Kokini K, Tullius B, Simmons-Byrd A, Morff R (2002) Morphologic study of small intestinal submucosa as a body wall repair device. J Surg Res 103(2):190–202

    Article  Google Scholar 

  4. Angell DL, Angell WW (1976) Heart valve stent. USA patent 3983581

    Google Scholar 

  5. Dewanjee MR (1988) Mayo Foundation, assignee. Treatment of Collagenous Tissue with Glutaraldehyde and Aminodiphosphoate Calcification Inhibitor USA patent 4553974

    Google Scholar 

  6. Liotta DS, Ferrari HM, Pisanu AJ, Donato FO (1978) Low profile glutaraldehyde-fixed porcine aortic prosthetic device USA patent 4079468

    Google Scholar 

  7. van der Rest M, Garrone R (1991) Collagen family of proteins. FASEB J 5(13):2814–2823

    Article  Google Scholar 

  8. Badylak SF (2002) The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol 13(5):377–383

    Article  Google Scholar 

  9. Klein B, Schiffer R, Hafemann B, Klosterhalfen B, Zwadlo-Klarwasser G (2001) Inflammatory response to a porcine membrane composed of fibrous collagen and elastin as dermal substitute. J Mater Sci Mater Med 12(5):419–424

    Article  Google Scholar 

  10. Zhang MH, Chen J, Kirilak Y, Willers C, Xu J, Wood D (2005) Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J Biomed Mater Res B Appl Biomater 73(1):61–67

    Article  Google Scholar 

  11. Dzemeshkevich SL, Konstantinov BA, Gromova GV, Lyudinovskova RA, Kudrina LL (1994) The mitral valve replacement by the new-type bioprostheses (features of design and long-term results). J Cardiovasc Surg 35(6 Suppl 1):189–191

    Google Scholar 

  12. Allman AJ, McPherson TB, Badylak SF, Merrill LC, Kallakury B, Sheehan C, Raeder RH, Folk JE (1980) Transglutaminases. Annu Rev Biochem 49:517–531

    Article  Google Scholar 

  13. Patino MG, Neiders ME, Andreana S, Noble B, Cohen RE (2003) Cellular inflammatory response to porcine collagen membranes. J Periodontal Res 38(5):458–464

    Article  Google Scholar 

  14. Konstantinovic ML, Lagae P, Zheng F, Verbeken EK, De Ridder D, Deprest JA (2005) Comparison of host response to polypropylene and non-cross-linked porcine small intestine serosal-derived collagen implants in a rat model. BJOG 112(11):1554–1560

    Article  Google Scholar 

  15. O’Neill P, Booth AE (1984) Use of porcine dermis as a dural substitute in 72 patients. J Neurosurg 61(2):351–354

    Article  Google Scholar 

  16. Gilbert TW, Sellaroa TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27:3675–3683

    Google Scholar 

  17. Syed O, Walters NJ, Day RM, Kim HW, Knowles JC (2014) Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta Biomaterialia 10(12):5043–5054

    Article  Google Scholar 

  18. O’Neill JD, Anfang R, Anandappa A (2013) Decellularization of human and porcine lung tissues for pulmonary tissue engineering. Ann Thorac Surg 96(3):1046–1055

    Article  Google Scholar 

  19. Zhou J, Fritze O, Schleicher M (2010) Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials 31(9):2549–2554

    Article  Google Scholar 

  20. Meezan E, Hjelle JT, Brendel K, Carlson EC (1975) A simple, versatile, nondisruptive method for the isolation of morphologically and chemically pure basement membranes from several tissues. Life Sci 17(11):1721–1732

    Article  Google Scholar 

  21. Partington L, Mordan NJ, Mason C (2013) Biochemical changes caused by decellularization may compromise mechanical integrity of tracheal scaffolds. Acta Biomaterialia 9(2):5251–5261

    Article  Google Scholar 

  22. Aghsoudlou P, Totonelli G, Loukogeorgakis SP, Eaton S, De Coppi P (2013) A decellularization methodology for the production of a natural acellular intestinal matrix. J Visual Exp 80:50658

    Google Scholar 

  23. Sullivan DC, Mirmalek-Sani SH, Deegan DB (2012) Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials 33(31):7756–7764

    Article  Google Scholar 

  24. Mendoza-Novelo B, Avila EE, Cauich-Rodríguez JV (2011) Decellularization of pericardial tissue and its impact on tensile viscoelasticity and glycosaminoglycan content. ActaBiomaterialia 7(3):1241–1248

    Google Scholar 

  25. Gilpin SE, Guyette JP, Gonzalez G (2014) Perfusion decellularization of human and porcine lungs: bringing the matrix to clinical scale. J Heart Lung Transplant 33(3):298–308

    Article  Google Scholar 

  26. Petersen TH, Calle EA, Colehour MB, Niklason LE (2012) Matrix composition and mechanics of decellularized lung scaffolds. Cells Tissues Organs 195(3):222–231

    Article  Google Scholar 

  27. Gilbert TW, Wognum S, Joyce EM, Freytes DO, Sacks MS, Badylak SF (2008) Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix. Biomaterials 29(36):4775–4782

    Article  Google Scholar 

  28. Schenke-Layland K, Vasilevski O, Opitz F (2003) Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. J Structural Biol 143(3):201–208

    Article  Google Scholar 

  29. Funamoto S, Nam K, Kimura T (2010) The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials 31(13):3590–3595

    Article  Google Scholar 

  30. Hashimoto Y, Funamoto S, Sasaki S (2010) Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials 31(14):3941–3948

    Article  Google Scholar 

  31. Sawada K, Terada D, Yamaoka T, Kitamura S, Fujisato T (2008) Cell removal with supercritical carbon dioxide for acellular artificial tissue. J Chem Tech Biotech 83(6):943–949

    Article  Google Scholar 

  32. Xing Q, Yates K, Tahtinen M, Shearier E, Qian Z, Zhao F (2015) Decellularization of fibroblast cell sheets for natural extracellular matrix scaffold preparation. Tissue Eng Part C Methods 21(1):77–87

    Article  Google Scholar 

  33. Elder BD, Kim DH, Athanasiou KA (2010) Developing an articular cartilage decellularization process toward facet joint cartilage replacement. Neurosurgery 66(4):722–727

    Article  Google Scholar 

  34. Uygun BE, Soto-Gutierrez A, Yagi H (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nature Med 16(7):814–820

    Article  Google Scholar 

  35. Friedrich LH, Jungebluth P, Sjöqvist S (2014) Preservation of aortic root architecture and properties using a detergent-enzymatic perfusion protocol. Biomaterials 35(6):1907–1913

    Article  Google Scholar 

  36. Baiguera S, Del Gaudio C, Kuevda E, Gonfiotti A, Bianco A, Macchiarini P (2014) Dynamic decellularization and cross-linking of rat tracheal matrix. Biomaterials 35(24):6344–6350

    Article  Google Scholar 

  37. Jank BJ, Xiong L, Moser PT (2015) Engineered composite tissue as a bioartificial limb graft. Biomaterials 61:246–256

    Article  Google Scholar 

  38. Guyette JP, Charest JM, Mills RW (2016) Bioengineering human myocardium on native extracellular matrix. Circulation Res 118(1):56–72

    Article  Google Scholar 

  39. Baptista MP, Siddiqui MM, Lozier G, Rodriguez SR, Atala A, Soker S (2011) The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 53(2):604–617

    Article  Google Scholar 

  40. Ott CH, Mathiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor D (2007) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14(2):213–221

    Article  Google Scholar 

  41. Wang L, Johnson JA, Chang DW, Zhang Q (2013) Decellularized musculofascial extracellular matrix for tissue engineering. Biomaterials 34(11):2641–2654

    Article  Google Scholar 

  42. Grauss RW, Hazekamp MG, Oppenhuizen F, Munsteren CJ, Gitenberger-de Groot AC, DeRuiter MC (2005) Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur J Cardiothorac Surg 27(4):566–578

    Article  Google Scholar 

  43. Crapo P, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243

    Article  Google Scholar 

  44. Cartmell JS, Dunn MG (2000) Effect of chemical treatment on tendon cellularity and mechanical properties. J Biomed Mater Res 49:134–140

    Article  Google Scholar 

  45. Rieder E, Kasimir MT, Silberhumer G (2004) Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg 127(2):399–405

    Article  Google Scholar 

  46. Böer U, Lohrenz A, Klingenberg M, Pich A, Haverich A, Wilhelmi M (2011) The effect of detergent-based decellularization procedures on cellular proteins and immunogenicity in equine carotid artery grafts. Biomaterials 32(36):9730–9737

    Article  Google Scholar 

  47. Giraldo-Gomez DM, Leon-Mancilla B, Del Prado-Audelo ML (2016) Trypsin as enhancement in cyclical tracheal decellularization: morphological and biophysical characterization. Materials Sci Eng C 59:930–937

    Article  Google Scholar 

  48. Mendes RL, Nobre BP, Cardoso MT, Pereira AP, Palavra AF (2003) Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorganica Chimica Acta 356:328–334

    Article  Google Scholar 

  49. Kim SA, Kim OY, Rhee MS (2010) Direct application of supercritical carbon dioxide for the reduction of Cronobacter spp. (Enterobacter sakazakii) in end products of dehydrated powdered infant formula. J Dairy Sci 93(5):1854–1860

    Article  Google Scholar 

  50. Jung WY, Choi YM, Rhee MS (2009) Potential use of supercritical carbon dioxide to decontaminate Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella typhimurium in alfalfa sprouted seeds. Int J Food Microbio 136(1):66–70

    Article  Google Scholar 

  51. Schmidt CE, Baier JM (2000) Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials 21(22):2215–2231

    Article  Google Scholar 

  52. Malone JM, Brendel K, Duhamil RC, Reinert RL (1984) Detergent- extracted small diameter vascular prostheses. J Vasc Surg 1:181–191

    Article  Google Scholar 

  53. Coito AJ, Kupiec-Weglinsky JW (1996) Extracellular matrix protein by standers or active participants in the allograft rejection cascade? Ann Transplant 1:14–18

    Google Scholar 

  54. Schechter I (1975) Prolonged retention of glutaraldehyde-treated skin allografts and xenografts: immunological and histological studies. Ann Surg 182(6):699–704

    Article  Google Scholar 

  55. Gulati AK, Cole GP (1994) Immunogenicity and regenerative potential of acellular nerve allograft to repair peripheral nerve in rats and rabbits. Acta Neurochir Wein 126:158–164

    Article  Google Scholar 

  56. Yoganathan AP (1995) Cardiac valve prosthesis. In: Bronzino JD (ed) The biomedical engineering hand book. CRC Press, Boca Raton, pp 1847–1870

    Google Scholar 

  57. Kropp BP, Cheng EY, Lin HK, Zhang Y (2004) Reliable and reproducible bladder regeneration using unseeded distal small intestinal submucosa. J Urol Suppl 172(4):1710–1771

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kumar, N. et al. (2022). Naturally Derived Biomaterials: An Overview. In: Kumar, N., Kumar, V., Shrivastava, S., Gangwar, A.K., Saxena, S. (eds) Tissue Scaffolds. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2425-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2425-8_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2424-1

  • Online ISBN: 978-1-0716-2425-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics