Skip to main content

Harnessing CRISPR-Cas9 for Epigenetic Engineering

  • Protocol
  • First Online:
Riboregulator Design and Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2518))

Abstract

Epigenome editing has become more precise and effective by coupling epigenetic effectors to the dCas9 protein and targeting regulatory regions such as promoters and enhancers. Here, we describe a basic methodology for performing an epigenome editing experiment, starting from gRNA design and cloning to transiently transfecting the gRNA plasmid and the CRISPR/dCas9-based epigenetic effector and finalizing with chromatin immunoprecipitation (ChIP) to validate changes in epigenetic state at a targeted genomic region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goell JH, Hilton IB (2021) CRISPR/Cas-based epigenome editing: advances, applications, and clinical utility. Trends Biotechnol 39:678–691. https://doi.org/10.1016/j.tibtech.2020.10.012

    Article  CAS  PubMed  Google Scholar 

  2. Choudhury SR, Cui Y, Lubecka K et al (2016) CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 7:46545–46556. https://doi.org/10.18632/oncotarget.10234

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hilton IB, D’Ippolito AM, Vockley CM et al (2015) Epigenome editing by a CRISPR/Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33:510–517. https://doi.org/10.1038/nbt.3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tarjan DR, Flavahan WA, Bernstein BE Epigenome editing strategies for the functional annotation of CTCF insulators. Nat Commun:1–8. https://doi.org/10.1038/s41467-019-12166-w

  5. Chavez A, Scheiman J, Vora S et al (2015) Highly-efficient Cas9-mediated transcriptional programming. Nat Methods 12:326–328. https://doi.org/10.1038/nmeth.3312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mahata B, Li J, Cabrera A et al. Compact engineered human transactivation modules enable potent and versatile synthetic transcriptional control. bioRxiv. https://doi.org/10.1101/2022.03.21.485228

  7. Gilbert LA, Larson MH, Morsut L et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451. https://doi.org/10.1016/j.cell.2013.06.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. O’Geen H, Ren C, Nicolet CM et al (2017) dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression. Nucleic Acids Res 45:9901–9916. https://doi.org/10.1093/nar/gkx578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stepper P, Kungulovski G, Jurkowska RZ et al (2017) Efficient targeted DNA methylation with chimeric dCas9–Dnmt3a–Dnmt3L methyltransferase. Nucleic Acids Res 45:1703–1713. https://doi.org/10.1093/nar/gkw1112

    Article  CAS  PubMed  Google Scholar 

  10. Li J, Mahata B, Escobar M et al (2021) Programmable human histone phosphorylation and gene activation using a CRISPR/Cas9-based chromatin kinase. Nat Commun 12:896. https://doi.org/10.1038/s41467-021-21188-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim JH, Rege M, Valeri J et al (2019) LADL: light-activated dynamic looping for endogenous gene expression control. Nat Methods 16:633–639. https://doi.org/10.1038/s41592-019-0436-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morgan SL, Mariano NC, Bermudez A et al (2017) Manipulation of nuclear architecture through CRISPR-mediated chromosomal looping. Nat Commun 8:15993. https://doi.org/10.1038/ncomms15993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pulecio J, Verma N, Mejía-Ramírez E et al (2017) CRISPR/Cas9-based engineering of the epigenome. Cell Stem Cell 21:431–447. https://doi.org/10.1016/j.stem.2017.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thakore PI, Black JB, Hilton IB, Gersbach CA (2016) Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 13:127–137. https://doi.org/10.1038/nmeth.3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sgro A, Blancafort P (2020) Epigenome engineering: new technologies for precision medicine. Nucleic Acids Res 48:12453–12482. https://doi.org/10.1093/nar/gkaa1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Concordet J-P, Haeussler M (2018) CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res 46:W242–W245. https://doi.org/10.1093/nar/gky354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chakraborty S, Ji H, Kabadi AM et al (2014) A CRISPR/Cas9-based system for reprogramming cell lineage specification. Stem Cell Rep 3:940–947. https://doi.org/10.1016/j.stemcr.2014.09.013

    Article  CAS  Google Scholar 

  18. Gilbert LA, Horlbeck MA, Adamson B et al (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–661. https://doi.org/10.1016/j.cell.2014.09.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuscu C, Arslan S, Singh R et al (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32:677–683. https://doi.org/10.1038/nbt.2916

    Article  CAS  PubMed  Google Scholar 

  20. Radzisheuskaya A, Shlyueva D, Müller I, Helin K (2016) Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression. Nucleic Acids Res 44:e141. https://doi.org/10.1093/nar/gkw583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li L, He Z-Y, Wei X-W et al (2015) Challenges in CRISPR/CAS9 delivery: potential roles of nonviral vectors. Hum Gene Ther 26:452–462. https://doi.org/10.1089/hum.2015.069

    Article  CAS  PubMed  Google Scholar 

  22. Cooray S, Howe SJ, Thrasher AJ (2012) Chapter three – retrovirus and lentivirus vector design and methods of cell conditioning. In: Friedmann T (ed) Methods in enzymology. Academic Press, pp 29–57

    Google Scholar 

  23. Xu CL, Ruan MZC, Mahajan VB, Tsang SH (2019) Viral delivery systems for CRISPR. Viruses 11:28. https://doi.org/10.3390/v11010028

    Article  CAS  PubMed Central  Google Scholar 

  24. Rittiner JE, Moncalvo M, Chiba-Falek O, Kantor B (2020) Gene-editing technologies paired with viral vectors for translational research into neurodegenerative diseases. Front Mol Neurosci 13. https://doi.org/10.3389/fnmol.2020.00148

  25. Li Y, Wu M, Zhao D et al (2015) Electroporation on microchips: the harmful effects of pH changes and scaling down. Sci Rep 5:17817. https://doi.org/10.1038/srep17817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park PJ (2009) ChIP–seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680. https://doi.org/10.1038/nrg2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Abhimanyu, Ontiveros CO, Guerra-Resendez RS et al (2021) Reversing post-infectious epigenetic-mediated immune suppression. Front Immunol 12:2093. https://doi.org/10.3389/fimmu.2021.688132

    Article  CAS  Google Scholar 

  28. Rauluseviciute I, Drabløs F, Rye MB (2019) DNA methylation data by sequencing: experimental approaches and recommendations for tools and pipelines for data analysis. Clin Epigenetics 11:193. https://doi.org/10.1186/s13148-019-0795-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Z, Schulz MH, Look T et al (2019) Identification of transcription factor binding sites using ATAC-seq. Genome Biol 20:45. https://doi.org/10.1186/s13059-019-1642-2

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long range interactions reveals folding principles of the human genome. Science 326:289–293. https://doi.org/10.1126/science.1181369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hughes JR, Roberts N, McGowan S et al (2014) Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat Genet 46:205–212. https://doi.org/10.1038/ng.2871

    Article  CAS  PubMed  Google Scholar 

  32. Sanjana NE, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11:783–784. https://doi.org/10.1038/nmeth.3047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shalem O, Sanjana NE, Hartenian E et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87. https://doi.org/10.1126/science.1247005

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac B. Hilton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guerra-Resendez, R.S., Hilton, I.B. (2022). Harnessing CRISPR-Cas9 for Epigenetic Engineering. In: Chappell, J., Takahashi, M.K. (eds) Riboregulator Design and Analysis. Methods in Molecular Biology, vol 2518. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2421-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2421-0_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2420-3

  • Online ISBN: 978-1-0716-2421-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics