Skip to main content

Microscale Thermophoresis to Study RNA–RNA Binding Affinity

  • Protocol
  • First Online:
Prokaryotic Gene Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2516))

Abstract

Evaluation of RNA–RNA binding is crucial for in vitro studying of molecular mechanisms, for example, the interaction of noncoding RNAs (ncRNAs) with their respective targets. In recent years, the method of microscale thermophoresis (MST) has been developed, which is based on the physical phenomenon of thermophoresis (Ludwig–Soret Effect), defined as the migration of a molecule in a solution in response to a macroscopic temperature gradient. The method enables the fast detection and characterization of biophysical interaction between molecules, with the fundamental advantage that only small amounts of target and ligand are required. Here, we describe the characterization of RNA–RNA binding affinity using the example of the sRNA41 from Methanosarcina mazei and its native target, the 5’ UTR of mRNA-MM2089, the first gene of the operon encoding the acetyl–CoA decarboxylase/synthase complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morris KV, Mattick JS (2014) The rise of regulatory RNA. Nat Rev Genet 15(6):423–437. https://doi.org/10.1038/nrg3722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136(4):615–628. https://doi.org/10.1016/j.cell.2009.01.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bizebard T, Arluison V, Bockelmann U (2018) Single-molecule FRET assay to observe the activity of proteins involved in RNA/RNA annealing. In: Arluison V, Valverde C (eds) Bacterial regulatory RNA: Methods and protocols. Springer, New York, pp 301–319

    Chapter  Google Scholar 

  4. Di Primo C, Dausse E, Toulmé J-J (2011) Surface plasmon resonance investigation of RNA aptamer–RNA ligand interactions. In: Goodchild J (ed) Therapeutic oligonucleotides: Methods and protocols. Springer Science+Business Media LLC, Totowa, pp 279–300

    Chapter  Google Scholar 

  5. Jerabek-Willemsen M, André T, Wanner R et al (2014) MicroScale thermophoresis: Interaction analysis and beyond. J Mol Struct 1077:101–113. https://doi.org/10.1016/j.molstruc.2014.03.009

    Article  CAS  Google Scholar 

  6. Asmari M, Ratih R, Alhazmi HA et al (2018) Thermophoresis for characterizing biomolecular interaction. Methods 146:107–119. https://doi.org/10.1016/j.ymeth.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  7. Salze M, Muller C, Bernay B et al (2020) Study of key RNA metabolism proteins in Enterococcus faecalis. RNA Biol 17(6):794–804. https://doi.org/10.1080/15476286.2020.1728103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sonnleitner E, Prindl K, Bläsi U (2017) The Pseudomonas aeruginosa CrcZ RNA interferes with Hfq-mediated riboregulation. PLoS One 12(7):e0180887. https://doi.org/10.1371/journal.pone.0180887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moon MH, Hilimire TA, Sanders AM et al (2018) Measuring RNA-ligand interactions with microscale thermophoresis. Biochemistry 57(31):4638–4643. https://doi.org/10.1021/acs.biochem.7b01141

    Article  CAS  PubMed  Google Scholar 

  10. Buddeweg A, Sharma K, Urlaub H et al (2018) sRNA41 affects ribosome binding sites within polycistronic mRNAs in Methanosarcina mazei Gö1. Mol Microbiol 107(5):595–609. https://doi.org/10.1111/mmi.13900

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank the Schmitz–Streit working group for helpful discussions. The work was partially funded by the Deutsche Forschungsgemeinschaft (DFG) (SCHM1052/9-2, SCHM1052/21-1, SCHM1052/20-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth A. Schmitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jordan, B., Nickel, L., Schmitz, R.A. (2022). Microscale Thermophoresis to Study RNA–RNA Binding Affinity. In: Peeters, E., Bervoets, I. (eds) Prokaryotic Gene Regulation. Methods in Molecular Biology, vol 2516. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2413-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2413-5_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2412-8

  • Online ISBN: 978-1-0716-2413-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics