Skip to main content

Administration of P2X7 Receptor Blockers in Oncological Experimental Models

  • Protocol
  • First Online:
The P2X7 Receptor

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2510))

Abstract

The tumor microenvironment is rich in components that strongly influence cancer cell survival. One of the pivotal molecules present at the tumor bed is ATP, which has an essential role in promoting cancer proliferation and metastasis and immune responses via its receptor P2X7. Several studies have proved the efficacy of P2X7 pharmacological blockade in inhibiting primary and metastatic tumor growth in preclinical models. Here we describe the experimental procedures that we optimized to test P2X7 roles in carcinogenesis by antagonist administration. Special attention is paid to their concentrations and routes of administration. The depicted in vitro models include cell count and viability assays, which are useful to test P2X7 roles in cell proliferation and vitality, and the soft agar colony formation test that allows investigation of the transforming and invading abilities of tumor cells. We also describe systemic and intramass administration of P2X7 blockers in murine models of melanoma and leukemia. Both xenotransplant and syngeneic experimental tumor models are detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Di Virgilio F, Sarti AC, Falzoni S, De Marchi E, Adinolfi E (2018) Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat Rev Cancer 18(10):601–618. https://doi.org/10.1038/s41568-018-0037-0

    Article  CAS  PubMed  Google Scholar 

  2. Lara R, Adinolfi E, Harwood CA, Philpott M, Barden JA, Di Virgilio F, McNulty S (2020) P2X7 in cancer: from molecular mechanisms to therapeutics. Front Pharmacol 11:793. https://doi.org/10.3389/fphar.2020.00793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Adinolfi E, De Marchi E, Orioli E, Pegoraro A, Di Virgilio F (2019) Role of the P2X7 receptor in tumor-associated inflammation. Curr Opin Pharmacol 47:59–64. https://doi.org/10.1016/j.coph.2019.02.012

    Article  CAS  PubMed  Google Scholar 

  4. Orioli E, De Marchi E, Giuliani AL, Adinolfi E (2017) P2X7 receptor orchestrates multiple signalling pathways triggering inflammation, autophagy and metabolic/trophic responses. Curr Med Chem 24(21):2261–2275. https://doi.org/10.2174/0929867324666170303161659

    Article  CAS  PubMed  Google Scholar 

  5. Amoroso F, Capece M, Rotondo A, Cangelosi D, Ferracin M, Franceschini A, Raffaghello L, Pistoia V, Varesio L, Adinolfi E (2015) The P2X7 receptor is a key modulator of the PI3K/GSK3beta/VEGF signaling network: evidence in experimental neuroblastoma. Oncogene 34(41):5240–5251. https://doi.org/10.1038/onc.2014.444

    Article  CAS  PubMed  Google Scholar 

  6. Lili W, Yun L, Tingran W, Xia W, Yanlei S (2019) P2RX7 functions as a putative biomarker of gastric cancer and contributes to worse prognosis. Exp Biol Med (Maywood) 244(9):734–742. https://doi.org/10.1177/1535370219846492

    Article  CAS  Google Scholar 

  7. Calik I, Calik M, Sarikaya B, Ozercan IH, Arslan R, Artas G, Dagli AF (2020) P2X7 receptor as an independent prognostic indicator in gastric cancer. Bosn J Basic Med Sci 20(2):188–196. https://doi.org/10.17305/bjbms.2020.4620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Adamiak M, Bujko K, Cymer M, Plonka M, Glaser T, Kucia M, Ratajczak J, Ulrich H, Abdel-Latif A, Ratajczak MZ (2018) Novel evidence that extracellular nucleotides and purinergic signaling induce innate immunity-mediated mobilization of hematopoietic stem/progenitor cells. Leukemia 32(9):1920–1931. https://doi.org/10.1038/s41375-018-0122-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Calik I, Calik M, Turken G, Ozercan IH (2020) A promising independent prognostic biomarker in colorectal cancer: P2X7 receptor. Int J Clin Exp Pathol 13(2):107–121

    PubMed  PubMed Central  Google Scholar 

  10. Feng W, Yang X, Wang L, Wang R, Yang F, Wang H, Liu X, Ren Q, Zhang Y, Zhu X, Zheng G (2020) P2X7 promotes the progression of MLL-AF9 induced acute myeloid leukemia by upregulation of Pbx3. Haematologica 106(5):1278–1289. https://doi.org/10.3324/haematol.2019.243360

    Article  CAS  PubMed Central  Google Scholar 

  11. Pegoraro A, Orioli E, De Marchi E, Salvestrini V, Milani A, Di Virgilio F, Curti A, Adinolfi E (2020) Differential sensitivity of acute myeloid leukemia cells to daunorubicin depends on P2X7A versus P2X7B receptor expression. Cell Death Dis 11(10):876. https://doi.org/10.1038/s41419-020-03058-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. He X, Wang J, Yang X, Zhang X, Huang D, Li X, Zou Y, Chen C, Yu Z, Xie L, Zhang Y, Liu L, Li S, Zhao Y, Shao H, Yu Y, Zheng J (2020) Bone marrow niche ATP levels determine leukemia-initiating cell activity via P2X7 in leukemic models. J Clin Invest 131(4):140242. https://doi.org/10.1172/JCI140242

    Article  Google Scholar 

  13. Pegoraro A, De Marchi E, Adinolfi E (2021) P2X7 variants in oncogenesis. Cell 10(1):189. https://doi.org/10.3390/cells10010189

    Article  CAS  Google Scholar 

  14. Adinolfi E, Raffaghello L, Giuliani AL, Cavazzini L, Capece M, Chiozzi P, Bianchi G, Kroemer G, Pistoia V, Di Virgilio F (2012) Expression of P2X7 receptor increases in vivo tumor growth. Cancer Res 72(12):2957–2969. https://doi.org/10.1158/0008-5472.CAN-11-1947

    Article  CAS  PubMed  Google Scholar 

  15. Adinolfi E, Capece M, Franceschini A, Falzoni S, Giuliani AL, Rotondo A, Sarti AC, Bonora M, Syberg S, Corigliano D, Pinton P, Jorgensen NR, Abelli L, Emionite L, Raffaghello L, Pistoia V, Di Virgilio F (2015) Accelerated tumor progression in mice lacking the ATP receptor P2X7. Cancer Res 75(4):635–644. https://doi.org/10.1158/0008-5472.CAN-14-1259

    Article  CAS  PubMed  Google Scholar 

  16. Lecciso M, Ocadlikova D, Sangaletti S, Trabanelli S, De Marchi E, Orioli E, Pegoraro A, Portararo P, Jandus C, Bontadini A, Redavid A, Salvestrini V, Romero P, Colombo MP, Di Virgilio F, Cavo M, Adinolfi E, Curti A (2017) ATP release from chemotherapy-treated dying leukemia cells elicits an immune suppressive effect by increasing regulatory T cells and tolerogenic dendritic cells. Front Immunol 8:1918. https://doi.org/10.3389/fimmu.2017.01918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Marchi E, Orioli E, Pegoraro A, Sangaletti S, Portararo P, Curti A, Colombo MP, Di Virgilio F, Adinolfi E (2019) The P2X7 receptor modulates immune cells infiltration, ectonucleotidases expression and extracellular ATP levels in the tumor microenvironment. Oncogene 38(19):3636–3650. https://doi.org/10.1038/s41388-019-0684-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Adinolfi E, Callegari MG, Ferrari D, Bolognesi C, Minelli M, Wieckowski MR, Pinton P, Rizzuto R, Di Virgilio F (2005) Basal activation of the P2X7 ATP receptor elevates mitochondrial calcium and potential, increases cellular ATP levels, and promotes serum-independent growth. Mol Biol Cell 16(7):3260–3272. https://doi.org/10.1091/mbc.E04-11-1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gu BJ, Wiley JS (2006) Rapid ATP-induced release of matrix metalloproteinase 9 is mediated by the P2X7 receptor. Blood 107(12):4946–4953. https://doi.org/10.1182/blood-2005-07-2994

    Article  CAS  PubMed  Google Scholar 

  20. Hill LM, Gavala ML, Lenertz LY, Bertics PJ (2010) Extracellular ATP may contribute to tissue repair by rapidly stimulating purinergic receptor X7-dependent vascular endothelial growth factor release from primary human monocytes. J Immunol 185(5):3028–3034. https://doi.org/10.4049/jimmunol.1001298

    Article  CAS  PubMed  Google Scholar 

  21. Ulrich H, Ratajczak MZ, Schneider G, Adinolfi E, Orioli E, Ferrazoli EG, Glaser T, Correa-Velloso J, Martins PCM, Coutinho F, Santos APJ, Pillat MM, Sack U, Lameu C (2018) Kinin and purine signaling contributes to neuroblastoma metastasis. Front Pharmacol 9:500. https://doi.org/10.3389/fphar.2018.00500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Clapp C, Diaz-Lezama N, Adan-Castro E, Ramirez-Hernandez G, Moreno-Carranza B, Sarti AC, Falzoni S, Solini A, Di Virgilio F (2019) Pharmacological blockade of the P2X7 receptor reverses retinal damage in a rat model of type 1 diabetes. Acta Diabetol 56(9):1031–1036. https://doi.org/10.1007/s00592-019-01343-4

    Article  PubMed  Google Scholar 

  23. Xia J, Yu X, Tang L, Li G, He T (2015) P2X7 receptor stimulates breast cancer cell invasion and migration via the AKT pathway. Oncol Rep 34(1):103–110. https://doi.org/10.3892/or.2015.3979

    Article  CAS  PubMed  Google Scholar 

  24. Jelassi B, Chantome A, Alcaraz-Perez F, Baroja-Mazo A, Cayuela ML, Pelegrin P, Surprenant A, Roger S (2011) P2X(7) receptor activation enhances SK3 channels- and cystein cathepsin-dependent cancer cells invasiveness. Oncogene 30(18):2108–2122. https://doi.org/10.1038/onc.2010.593

    Article  CAS  PubMed  Google Scholar 

  25. Jelassi B, Anchelin M, Chamouton J, Cayuela ML, Clarysse L, Li J, Gore J, Jiang LH, Roger S (2013) Anthraquinone emodin inhibits human cancer cell invasiveness by antagonizing P2X7 receptors. Carcinogenesis 34(7):1487–1496. https://doi.org/10.1093/carcin/bgt099

    Article  CAS  PubMed  Google Scholar 

  26. Zhou JZ, Riquelme MA, Gao X, Ellies LG, Sun LZ, Jiang JX (2015) Differential impact of adenosine nucleotides released by osteocytes on breast cancer growth and bone metastasis. Oncogene 34(14):1831–1842. https://doi.org/10.1038/onc.2014.113

    Article  CAS  PubMed  Google Scholar 

  27. Di Virgilio F, Falzoni S, Giuliani AL, Adinolfi E (2016) P2 receptors in cancer progression and metastatic spreading. Curr Opin Pharmacol 29:17–25. https://doi.org/10.1016/j.coph.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  28. Brisson L, Chadet S, Lopez-Charcas O, Jelassi B, Ternant D, Chamouton J, Lerondel S, Le Pape A, Couillin I, Gombault A, Trovero F, Chevalier S, Besson P, Jiang LH, Roger S (2020) P2X7 receptor promotes mouse mammary cancer cell invasiveness and tumour progression, and is a target for anticancer treatment. Cancers (Basel) 12(9):2342. https://doi.org/10.3390/cancers12092342

    Article  CAS  Google Scholar 

  29. Arnaud-Sampaio VF, Rabelo ILA, Ulrich H, Lameu C (2020) The P2X7 receptor in the maintenance of cancer stem cells, chemoresistance and metastasis. Stem Cell Rev Rep 16(2):288–300. https://doi.org/10.1007/s12015-019-09936-w

    Article  PubMed  Google Scholar 

  30. Di Virgilio F, Jiang LH, Roger S, Falzoni S, Sarti AC, Vultaggio-Poma V, Chiozzi P, Adinolfi E (2019) Structure, function and techniques of investigation of the P2X7 receptor (P2X7R) in mammalian cells. Methods Enzymol 629:115–150. https://doi.org/10.1016/bs.mie.2019.07.043

    Article  CAS  PubMed  Google Scholar 

  31. De Marchi E, Orioli E, Pegoraro A, Adinolfi E, Di Virgilio F (2020) Detection of extracellular ATP in the tumor microenvironment, using the pmeLUC biosensor. Methods Mol Biol 2041:183–195. https://doi.org/10.1007/978-1-4939-9717-6_13

    Article  CAS  PubMed  Google Scholar 

  32. De Marchi E, Orioli E, Dal Ben D, Adinolfi E (2016) P2X7 receptor as a therapeutic target. Adv Protein Chem Struct Biol 104:39–79. https://doi.org/10.1016/bs.apcsb.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  33. Adinolfi E, Cirillo M, Woltersdorf R, Falzoni S, Chiozzi P, Pellegatti P, Callegari MG, Sandona D, Markwardt F, Schmalzing G, Di Virgilio F (2010) Trophic activity of a naturally occurring truncated isoform of the P2X7 receptor. FASEB J 24(9):3393–3404. https://doi.org/10.1096/fj.09-153601

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Adinolfi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

De Marchi, E., Pegoraro, A., Adinolfi, E. (2022). Administration of P2X7 Receptor Blockers in Oncological Experimental Models. In: Nicke, A. (eds) The P2X7 Receptor. Methods in Molecular Biology, vol 2510. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2384-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2384-8_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2383-1

  • Online ISBN: 978-1-0716-2384-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics