Skip to main content

Peptide Tags and Domains for Expression and Detection of Mammalian Membrane Proteins at the Cell Surface

  • Protocol
  • First Online:
Heterologous Expression of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2507))

  • 1332 Accesses

Abstract

Normal functions of cell-surface proteins are dependent on their proper trafficking from the site of synthesis to the cell surface. Transport proteins mediating solute transfer across the plasma membrane constitute an important group of cell-surface proteins. There are several diseases resulting from mutations in these proteins that interfere with their transport function or trafficking, depending on the impact of the mutations on protein folding and structure. Recent advances in successful treatment of some of these diseases with small molecules which correct the mutations-induced folding and structural changes underline the need for detailed structural and biophysical characterization of membrane proteins. This requires methods to express and purify these proteins using heterologous expression systems. Here, using the solute carrier (SLC) transporter NaCT (Na+-coupled citrate transporter) as an example, we describe experimental strategies for this approach. We chose this example because several mutations in NaCT, distributed throughout the protein, cause a severe neurologic disease known as early infantile epileptic encephalopathy-25 (EIEE-25). NaCT was modified with various peptide tags, including a RGS-His10, a Twin-Strep, the SUMOstar domain, and an enhanced green fluorescent protein (EGFP), each alone or in various combinations. When transiently expressed in HEK293 cells, recombinant NaCT proteins underwent complex glycosylation, compartmentalized with the plasma membrane, and exhibited citrate transport activity similar to the nontagged protein. Surface NaCT expression was enhanced by the presence of SUMOstar on the N-terminus. The dual-purpose peptide epitopes RGS-His10 and Twin-Strep facilitated detection of NaCT by immunohistochemistry and western blot and may serve useful tags for affinity purification. This approach sets the stage for future analyses of mutant NaCT proteins that may alter protein folding and trafficking. It also demonstrates the capability of a transient mammalian cell expression system to produce human NaCT of sufficient quality and quantity to augment future biophysical and structural studies and drug discovery efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kimple ME, Brill AL, Pasker RL (2013) Overview of affinity tags for protein purification. Curr Protoc Protein Sci 73(1):9.9. 1–9.9. 23

    Article  Google Scholar 

  2. Pina AS, Batalha ÍL, Dias AM, Roque ACA (2021) Affinity tags in protein purification and peptide enrichment: an overview. Methods Mol Biol 2178:107–132

    Article  CAS  PubMed  Google Scholar 

  3. Chen X, Zaro JL, Shen W-C (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65(10):1357–1369

    Article  CAS  PubMed  Google Scholar 

  4. Gomari MM, Saraygord-Afshari N, Farsimadan M, Rostami N, Aghamiri S, Farajollahi MM (2020) Opportunities and challenges of the tag-assisted protein purification techniques: applications in the pharmaceutical industry. Biotechnol Adv 41:107653

    Article  CAS  Google Scholar 

  5. Yadav DK, Yadav N, Yadav S, Haque S, Tuteja N (2016) An insight into fusion technology aiding efficient recombinant protein production for functional proteomics. Arch Biochem Biophys 612:57–77

    Article  CAS  PubMed  Google Scholar 

  6. Young CL, Britton ZT, Robinson AS (2012) Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol J 7(5):620–634

    Article  CAS  PubMed  Google Scholar 

  7. Sugimoto H, Matsumoto S-I, Tachibana M, Niwa S-I, Hirabayashi H, Amano N, Moriwaki T (2011) Establishment of in vitro P-glycoprotein inhibition assay and its exclusion criteria to assess the risk of drug–drug interaction at the drug discovery stage. J Pharm Sci 100(9):4013–4023

    Article  CAS  PubMed  Google Scholar 

  8. Liu L, Spurrier J, Butt TR, Strickler JE (2008) Enhanced protein expression in the baculovirus/insect cell system using engineered SUMO fusions. Protein Expr Purif 62(1):21–28. https://doi.org/10.1016/j.pep.2008.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Panavas T, Sanders C, Butt TR (2009) SUMO fusion technology for enhanced protein production in prokaryotic and eukaryotic expression systems. Methods Mol Biol 497:303–317. https://doi.org/10.1007/978-1-59745-566-4_20

    Article  CAS  PubMed  Google Scholar 

  10. Melchior F (2000) SUMO—nonclassical ubiquitin. Annu Rev Cell Dev Biol 16(1):591–626

    Article  CAS  PubMed  Google Scholar 

  11. Hildebrandt E, Ding H, Mulky A, Dai Q, Aleksandrov AA, Bajrami B, Diego PA, Wu X, Ray M, Naren AP (2015) A stable human-cell system overexpressing cystic fibrosis transmembrane conductance regulator recombinant protein at the cell surface. Mol Biotechnol 57(5):391–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Peroutka RJ, Elshourbagy N, Piech T, Butt TR (2008) Enhanced protein expression in mammalian cells using engineered SUMO fusions: secreted phospholipase A2. Protein Sci 17(9):1586–1595. https://doi.org/10.1110/ps.035576.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mohanty AK, Simmons CR, Wiener MC (2003) Inhibition of tobacco etch virus protease activity by detergents. Protein Expr Purif 27(1):109–114

    Article  CAS  PubMed  Google Scholar 

  14. Heim R, Cubitt AB, Tsien RY (1995) Improved green fluorescence. Nature 373(6516):663–664. https://doi.org/10.1038/373663b0

    Article  CAS  PubMed  Google Scholar 

  15. Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296(5569):913–916. https://doi.org/10.1126/science.1068539

    Article  CAS  PubMed  Google Scholar 

  16. Chloupková M, Pickert A, Lee J-Y, Souza S, Trinh YT, Connelly SM, Dumont ME, Dean M, Urbatsch IL (2007) Expression of 25 human ABC transporters in the yeast Pichia pastoris and characterization of the purified ABCC3 ATPase activity. Biochemistry 46(27):7992–8003

    Article  PubMed  CAS  Google Scholar 

  17. Johnson BJH, Lee J-Y, Pickert A, Urbatsch IL (2010) Bile acids stimulate ATP hydrolysis in the purified cholesterol transporter ABCG5/G8. Biochemistry 49(16):3403–3411

    Article  CAS  PubMed  Google Scholar 

  18. Swartz DJ, Singh A, Sok N, Thomas JN, Weber J, Urbatsch IL (2020) Replacing the eleven native P-glycoprotein tryptophans by directed evolution produces an active protein with site-specific, non-conservative substitutions. Sci Rep 10:3224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang Z, Hildebrandt E, Jiang F, Aleksandrov AA, Khazanov N, Zhou Q, An J, Mezzell AT, Xavier BM, Ding H (2018) Structural stability of purified human CFTR is systematically improved by mutations in nucleotide binding domain 1. Biochim Biophys Acta Biomembr 1860(5):1193–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zoghbi ME, Mok L, Swartz DJ, Singh A, Fendley GA, Urbatsch IL, Altenberg GA (2017) Substrate-induced conformational changes in the nucleotide-binding domains of lipid bilayer–associated P-glycoprotein during ATP hydrolysis. J Biol Chem 292(50):20412–20424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hildebrandt E, Zhang Q, Cant N, Ding H, Dai Q, Peng L, Fu Y, DeLucas LJ, Ford R, Kappes JC (2014) A survey of detergents for the purification of stable, active human cystic fibrosis transmembrane conductance regulator (CFTR). Biochim Biophys Acta Biomembr 1838(11):2825–2837

    Article  CAS  Google Scholar 

  22. Kozak M (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol 196(4):947–950

    Article  CAS  PubMed  Google Scholar 

  23. Kozak M (1990) Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc Natl Acad Sci U S A 87(21):8301–8305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kozak M (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem 266(30):19867–19870

    Article  CAS  PubMed  Google Scholar 

  25. Kielkopf CL, Bauer W, Urbatsch IL (2012) Expressing cloned genes for protein production, purification, and analysis. In: Green M and Sambrook journal of molecular cloning, 4th edn. CSHL Press, New York

    Google Scholar 

  26. Inoue T, Krumlauf R (2001) An impulse to the brain--using in vivo electroporation. Nat Neurosci 4(11s):1156

    Article  CAS  PubMed  Google Scholar 

  27. Hasan MM, Ragnarsson L, Cardoso FC, Lewis RJ (2021) Transfection methods for high-throughput cellular assays of voltage-gated calcium and sodium channels involved in pain. PLoS One 16(3):e0243645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim TK, Eberwine JH (2010) Mammalian cell transfection: the present and the future. Anal Bioanal Chem 397(8):3173–3178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dalby B, Cates S, Harris A, Ohki EC, Tilkins ML, Price PJ, Ciccarone VC (2004) Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods 33(2):95–103

    Article  CAS  PubMed  Google Scholar 

  30. Andréll J, Edwards PC, Zhang F, Daly M, Tate CG (2016) Generation of tetracycline-inducible mammalian cell lines by flow cytometry for improved overproduction of membrane proteins. Methods Mol Biol 1432:63–78. https://doi.org/10.1007/978-1-4939-3637-3_5

    Article  CAS  PubMed  Google Scholar 

  31. Höglund PJ, Nordström KJ, Schiöth HB, Fredriksson R (2011) The solute carrier families have a remarkably long evolutionary history with the majority of the human families present before divergence of Bilaterian species. Mol Biol Evol 28(4):1531–1541

    Article  PubMed  CAS  Google Scholar 

  32. Bai X, Moraes TF, Reithmeier RA (2017) Structural biology of solute carrier (SLC) membrane transport proteins. Mol Membr Biol 34(1–2):1–32

    Article  PubMed  CAS  Google Scholar 

  33. Fredriksson R, Nordström KJ, Stephansson O, Hägglund MG, Schiöth HB (2008) The solute carrier (SLC) complement of the human genome: phylogenetic classification reveals four major families. FEBS Lett 582(27):3811–3816

    Article  CAS  PubMed  Google Scholar 

  34. Hediger MA, Romero MF, Peng J-B, Rolfs A, Takanaga H, Bruford EA (2004) The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. Pflugers Arch 447(5):465–468

    Article  CAS  PubMed  Google Scholar 

  35. Gopal E, Miyauchi S, Martin PM, Ananth S, Srinivas SR, Smith SB, Prasad PD, Ganapathy V (2007) Expression and functional features of NaCT, a sodium-coupled citrate transporter, in human and rat livers and cell lines. American journal of physiology-gastrointestinal and liver. Physiology 292(1):G402–G408

    CAS  Google Scholar 

  36. Yodoya E, Wada M, Shimada A, Katsukawa H, Okada N, Yamamoto A, Ganapathy V, Fujita T (2006) Functional and molecular identification of sodium-coupled dicarboxylate transporters in rat primary cultured cerebrocortical astrocytes and neurons. J Neurochem 97(1):162–173

    Article  CAS  PubMed  Google Scholar 

  37. Irizarry AR, Yan G, Zeng Q, Lucchesi J, Hamang MJ, Ma YL, Rong JX (2017) Defective enamel and bone development in sodium-dependent citrate transporter (NaCT) Slc13a5 deficient mice. PLoS One 12(4):1–17

    Article  CAS  Google Scholar 

  38. Yan R, Zhao X, Lei J, Zhou Q (2019) Structure of the human LAT1-4F2hc heteromeric amino acid transporter complex. Nature 568(7750):127–130. https://doi.org/10.1038/s41586-019-1011-z

    Article  CAS  PubMed  Google Scholar 

  39. Lee Y, Wiriyasermkul P, Jin C, Quan L, Ohgaki R, Okuda S, Kusakizako T, Nishizawa T, Oda K, Ishitani R (2019) Cryo-EM structure of the human L-type amino acid transporter 1 in complex with glycoprotein CD98hc. Nat Struct Mol Biol 26(6):510–517

    Article  CAS  PubMed  Google Scholar 

  40. Yu X, Plotnikova O, Bonin PD, Subashi TA, McLellan TJ, Dumlao D, Che Y, Dong YY, Carpenter EP, West GM (2019) Cryo-EM structures of the human glutamine transporter SLC1A5 (ASCT2) in the outward-facing conformation. eLife 8:1–17

    Article  Google Scholar 

  41. Sauer DB, Song J, Wang B, Hilton JK, Karpowich NK, Mindell JA, Rice WJ, Wang D-N (2021) Structure and inhibition mechanism of the human citrate transporter NaCT. Nature 591:157–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou Y, Liao L, Wang C, Li J, Chi P, Xiao Q, Liu Q, Guo L, Sun L, Deng D (2020) Cryo-EM structure of the human concentrative nucleoside transporter CNT3. PLoS Biol 18(8):e3000790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Walter JD, Sawicka M, Dutzler R (2019) Cryo-EM structures and functional characterization of murine Slc26a9 reveal mechanism of uncoupled chloride transport. Elife 8:1–31. https://doi.org/10.7554/eLife.46986

    Article  Google Scholar 

  44. Huynh KW, Jiang J, Abuladze N, Tsirulnikov K, Kao L, Shao X, Newman D, Azimov R, Pushkin A, Zhou ZH, Kurtz I (2018) CryoEM structure of the human SLC4A4 sodium-coupled acid-base transporter NBCe1. Nat Commun 9(1):1–9. https://doi.org/10.1038/s41467-018-03271-3

    Article  CAS  Google Scholar 

  45. Chiduza GN, Johnson RM, Wright GS, Antonyuk SV, Muench SP, Hasnain SS (2019) LAT1 (SLC7A5) and CD98hc (SLC3A2) complex dynamics revealed by single-particle cryo-EM. Acta Crystallogr D Struct Biol 75(7):660–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zwart R, Peeva PM, Rong JX, Sher E (2015) Electrophysiological characterization of human and mouse sodium-dependent citrate transporters (NaCT/SLC13A5) reveal species differences with respect to substrate sensitivity and cation dependence. J Pharmacol Exp Ther 355(2):247–254

    Article  CAS  PubMed  Google Scholar 

  47. Hammill SC (1990) Overview of the clinical electrophysiology study. J Electrocardiol 22:209–217

    Article  Google Scholar 

  48. Keller JP, Looger LL (2016) The oscillating stimulus transporter assay, OSTA: quantitative functional imaging of transporter protein activity in time and frequency domains. Mol Cell 64(1):199–212

    Article  CAS  PubMed  Google Scholar 

  49. Krmpot AJ, Nikolic SN, Oasa S, Papadopoulos DK, Vitali M, Oura M, Mikuni S, Thyberg P, Tisa S, Kinjo M (2019) Functional fluorescence microscopy imaging: quantitative scanning-free confocal fluorescence microscopy for the characterization of fast dynamic processes in live cells. Anal Chem 91(17):11129–11137

    Article  CAS  PubMed  Google Scholar 

  50. Inoue K, Zhuang L, Maddox DM, Smith SB, Ganapathy V (2002) Structure, function, and expression pattern of a novel sodium-coupled citrate transporter (NaCT) cloned from mammalian brain. J Biol Chem 277(42):39469–39476

    Article  CAS  PubMed  Google Scholar 

  51. Gopal E, Babu E, Ramachandran S, Bhutia YD, Prasad PD, Ganapathy V (2015) Species-specific influence of lithium on the activity of SLC13A5 (NaCT): lithium-induced activation is specific for the transporter in primates. J Pharmacol Exp Ther 353(1):17–26. https://doi.org/10.1124/jpet.114.221523

    Article  CAS  PubMed  Google Scholar 

  52. Inoue K, Zhuang L, Maddox DM, Smith SB, Ganapathy V (2003) Human sodium-coupled citrate transporter, the orthologue of drosophila Indy, as a novel target for lithium action. Biochem J 374(Pt 1):21–26. https://doi.org/10.1042/BJ20030827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Green MR, Sambrook J (2012) Cloning and transformation with plasmid vectors. In: Molecular cloning: a laboratory manual, Green and Sambrook, vol 1, 4th edn. CSHL Press, New York

    Google Scholar 

  54. Chaudhary S, Saha S, Thamminana S, Stroud RM (2016) Small-scale screening to large-scale over-expression of human membrane proteins for structural studies. Methods Mol Biol 1432:203–221. https://doi.org/10.1007/978-1-4939-3637-3_13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kielkopf CL, Bauer W, Urbatsch IL (2020) Methods for measuring the concentrations of proteins. Cold Spring Harb Protoc 2020(4):pdb. top102277

    Article  Google Scholar 

  56. Kielkopf CL, Bauer W, Urbatsch IL (2020) Bradford assay for determining protein concentration. Cold Spring Harb Protoc 2020(4):pdb. prot102269

    Article  Google Scholar 

  57. Kielkopf CL, Bauer W, Urbatsch IL (2012) Expressing cloned genes for protein production, purification, and analysis, protocol 8: SDS-PAGE of proteins. In: Molecular cloning: a laboratory manual, Green and Sambrook, vol 3, 4th edn. CSHL Press, New York

    Google Scholar 

  58. Kielkopf CL, Bauer W, Urbatsch IL (2021) Expressing cloned genes for protein production, purification, and analysis, protocol 9: analysis of proteins by immunoblotting. In: Molecular cloning: a laboratory manual, Green and Sambrook, vol 3, 4th edn. CSHL Press, New York

    Google Scholar 

  59. Kielkopf CL, Bauer W, Urbatsch IL (2012) Expressing cloned genes for protein production, purification, and analysis, protocol 10: methods for measureing the concentrations of proteins. In: Molecular cloning: a laboratory manual, Green and Sambrook, vol 3, 4th edn. CSHL Press, New York

    Google Scholar 

  60. Butash KA, Natarajan P, Young A, Fox DK (2000) Reexamination of the effect of endotoxin on cell proliferation and transfection efficiency. BioTechniques 29(3):610–619

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Cystic Fibrosis Foundation Therapeutics grants URBATS13XX0 to ILU, and National Institute of Health grant R41 AR074854 to VG. We thank the Imaging Core Facilities at TTUHSC for access to the confocal microscope, Dr. Souad Sennoune for proficient help with microscopy and members of the Center for Membrane Protein Research for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ina L. Urbatsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jaramillo-Martinez, V., Ganapathy, V., Urbatsch, I.L. (2022). Peptide Tags and Domains for Expression and Detection of Mammalian Membrane Proteins at the Cell Surface. In: Mus-Veteau, I. (eds) Heterologous Expression of Membrane Proteins. Methods in Molecular Biology, vol 2507. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2368-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2368-8_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2367-1

  • Online ISBN: 978-1-0716-2368-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics