Skip to main content

Thromboxane A2 G Protein-Coupled Receptor Production and Crystallization for Structure Studies

  • Protocol
  • First Online:
Heterologous Expression of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2507))

  • 1297 Accesses

Abstract

G protein-coupled receptors (GPCRs) play vital roles in human physiology and pathophysiology. This makes the elucidation of the high-resolution blueprints of these high value membrane proteins of crucial importance for the structure-based design of novel therapeutics. However, the production and crystallization of GPCRs for structure determination comes with many challenges.

In this chapter, we provide a comprehensive protocol for expressing and purifying the thromboxane A2 receptor (TPR), an attractive therapeutic target, for use in structure studies. Guidelines for crystallizing the TPR are also included. Together, these procedures provide a template for generating crystal structures of the TPR and indeed other GPCRs in complex with pharmacologically interesting ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Smyth E, Grosser T, Wang M, Yu Y, FitzGerald G (2009) Prostanoids in health and disease. J Lipid Res 50:S423–S428. https://doi.org/10.1194/jlr.r800094-jlr200

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nakahata N (2008) Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacol Ther 118:18–35. https://doi.org/10.1016/j.pharmthera.2008.01.001

    Article  CAS  PubMed  Google Scholar 

  3. Fan H, Chen S, Yuan X, Han S, Zhang H, Xia W, Xu Y, Zhao Q, Wu B (2019) Structural basis for ligand recognition of the human thromboxane A2 receptor. Nat Chem Biol 15:27–33. https://doi.org/10.1038/s41589-018-0170-9

    Article  CAS  PubMed  Google Scholar 

  4. Luckow V, Lee S, Barry G, Olins P (1993) Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 67:4566–4579. https://doi.org/10.1128/jvi.67.8.4566-4579.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aloia A, Glatz R, McMurchie E, Leifert W (2009) GPCR expression using baculovirus-infected Sf9 cells. Methods Mol Biol 552:115–129. https://doi.org/10.1007/978-1-60327-317-6_8

    Article  CAS  PubMed  Google Scholar 

  6. Munk C, Mutt E, Isberg V, Nikolajsen L, Bibbe J, Flock T, Hanson M, Stevens R, Deupi X, Gloriam D (2019) An online resource for GPCR structure determination and analysis. Nat Methods 16:151–162. https://doi.org/10.1038/s41592-018-0302-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Qanbar R, Bouvier M (2003) Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol Ther 97:1–33. https://doi.org/10.1016/s0163-7258(02)00300-5

    Article  CAS  PubMed  Google Scholar 

  8. Tobin A (2008) G-protein-coupled receptor phosphorylation: where, when and by whom. Br J Pharmacol 153:S167–S176. https://doi.org/10.1038/sj.bjp.0707662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen Q, Miller L, Dong M (2010) Role of N-linked glycosylation in biosynthesis, trafficking, and function of the human glucagon-like peptide 1 receptor. Am J Physiol Endocrinol Metab 299:E62–E68. https://doi.org/10.1152/ajpendo.00067.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Caffrey M (2015) A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr F Struct Biol Commun 71:3–18. https://doi.org/10.1107/s2053230x14026843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Caffrey M, Cherezov V (2009) Crystallizing membrane proteins using lipidic mesophases. Nat Protoc 4:706–731. https://doi.org/10.1038/nprot.2009.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Caffrey M, Porter C (2010) Crystallizing membrane proteins for structure determination using lipidic mesophases. J Vis Exp. https://doi.org/10.3791/1712

  13. Li D, Boland C, Walsh K, Caffrey M (2012) Use of a robot for high-throughput crystallization of membrane proteins in lipidic mesophases. J Vis Exp. https://doi.org/10.3791/4000

  14. Misquitta Y, Caffrey M (2003) Detergents destabilize the cubic phase of monoolein: implications for membrane protein crystallization. Biophys J 85:3084–3096. https://doi.org/10.1016/s0006-3495(03)74727-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gasteiger E (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788. https://doi.org/10.1093/nar/gkg563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Caffrey M (2011) Crystallizing membrane proteins for structure–function studies using lipidic mesophases. Biochem Soc Trans 39:725–732. https://doi.org/10.1042/bst0390725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank D. Weichert for training and guidance in GPCR expression, purification, and crystallization, B. Wu and H. Fan for providing the plasmid for the TPR construct, and past and present members of the Membrane Structural and Functional Biology group. This work was supported in part by Science Foundation Ireland award 16/IA/4435 and an Irish Research Council Postgraduate Scholarship GOIPG/2019/3074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Caffrey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Krawinski, P., Caffrey, M. (2022). Thromboxane A2 G Protein-Coupled Receptor Production and Crystallization for Structure Studies. In: Mus-Veteau, I. (eds) Heterologous Expression of Membrane Proteins. Methods in Molecular Biology, vol 2507. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2368-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2368-8_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2367-1

  • Online ISBN: 978-1-0716-2368-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics