Skip to main content

A Novel Nonhuman Primate Model of Nonatopic Asthma

  • Protocol
  • First Online:
Asthma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2506))

Abstract

Nonhuman primate models have an essential role in understanding progressive respiratory disease pathogenesis. Immune and physiologic parameters in the nonhuman primate closely reflect the complexity of human systems and provide an exceptional translational impact for the investigation of the mucosal immune changes in response to environmental exposures. This potential warrants the development of novel models that will clarify the interaction of respiratory disease and the inhalable environment and the potential of novel therapies to alleviate the untoward results of these interactions. Nonhuman primate models of asthma can be spontaneous, induced, or experimentally manipulated by various exposures. Here we describe a model of exacerbation of airway hyperreactivity induced by exposure to an air pollutant, ozone, in a cohort of young adult asthmatic rhesus macaques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AHR:

Airway hyperreactivity

BAL:

Bronchoalveolar lavage

CNPRC:

California National Primate Research Center

DC:

Dendritic cell

FACS:

Fluorescent activated cell sorting

IL-:

interleukin-

ILC:

Innate lymphoid cell

mDC:

myeloid DC

Nrf2:

nuclear factor-like 2

O3:

Ozone

pDC:

plasmacytoid DC

ppm:

parts per million

qPCR:

Quantitative real-time polymerase chain reaction

Raw:

airway resistance to methacholine

SP-D:

Surfactant protein-D

References

  1. Chen E, Miller GE (2007) Stress and inflammation in exacerbations of asthma. Brain Behav Immun 21:993–999

    Article  CAS  Google Scholar 

  2. Kreit JW, Gross KB, Moore TB et al (1989) Ozone-induced changes in pulmonary function and bronchial responsiveness in asthmatics. J Appl Physiol 66:217–222

    Article  CAS  Google Scholar 

  3. Peden DB (2011) The role of oxidative stress and innate immunity in O(3) and endotoxin-induced human allergic airway disease. Immunol Rev 242:91–105

    Article  CAS  Google Scholar 

  4. Ge MQ, Kokalari B, Flayer CH et al (2016) Cutting edge: role of NK cells and surfactant protein D in dendritic cell lymph node homing: effects of ozone exposure. J Immunol 196:553–557

    Article  CAS  Google Scholar 

  5. Yang Q, Ge MQ, Kokalari B et al (2016) Group 2 innate lymphoid cells mediate ozone-induced airway inflammation and hyperresponsiveness in mice. J Allergy Clin Immunol 137:571–578

    Article  CAS  Google Scholar 

  6. Kierstein S, Poulain FR, Cao Y et al (2006) Susceptibility to ozone-induced airway inflammation is associated with decreased levels of surfactant protein D. Respir Res 7:85

    Article  CAS  Google Scholar 

  7. Haczku A (2008) Protective role of the lung collectins surfactant protein A and surfactant protein D in airway inflammation. J Allergy Clin Immunol 122:861–879

    Article  CAS  Google Scholar 

  8. Yousefi S, Sharma SK, Stojkov D et al (2018) Oxidative damage of SP-D abolishes control of eosinophil extracellular DNA trap formation. J Leukoc Biol 104:205–214

    Article  CAS  Google Scholar 

  9. Gundel RH, Letts LG, Gleich GJ (1991) Human eosinophil major basic protein induces airway constriction and airway hyperresponsiveness in primates. J Clin Invest 87:1470–1473

    Article  CAS  Google Scholar 

  10. Golub MS, Hogrefe CE, Germann SL et al (2006) Behavioral consequences of developmental iron deficiency in infant rhesus monkeys. Neurotoxicol Teratol 28:3–17

    Article  CAS  Google Scholar 

  11. Capitanio JP, Miller LA, Schelegle ES et al (2011) Behavioral inhibition is associated with airway hyperresponsiveness but not atopy in a monkey model of asthma. Psychosom Med 73:288–294

    Article  CAS  Google Scholar 

  12. Chun K, Miller LA, Schelegle ES et al (2013) Behavioral inhibition in rhesus monkeys (Macaca mulatta) is related to the airways response, but not immune measures, commonly associated with asthma. PLoS One 8:e71575

    Article  CAS  Google Scholar 

  13. Patterson R, Harris KE (1992) IgE-mediated rhesus monkey asthma: natural history and individual animal variation. Int Arch Allergy Immunol 97:154–159

    Article  CAS  Google Scholar 

  14. Wegner CD, Gundel RH, Reilly P et al (1990) Intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of asthma. Science 247:456–459

    Article  CAS  Google Scholar 

  15. Coffman RL, Hessel EM (2005) Nonhuman primate models of asthma. J Exp Med 201:1875–1879

    Article  CAS  Google Scholar 

  16. Phillips KA, Bales KL, Capitanio JP et al (2014) Why primate models matter. Am J Primatol 76:801–827

    Article  Google Scholar 

  17. Miller LA, Cossette C, Chourey S et al (2020) Inhibition of allergen-induced dermal eosinophilia by an oxoeicosanoid receptor antagonist in non-human primates. Br J Pharmacol 177:360–371

    Article  CAS  Google Scholar 

  18. Fajt ML, Wenzel SE (2015) Asthma phenotypes and the use of biologic medications in asthma and allergic disease: the next steps toward personalized care. J Allergy Clin Immunol 135:299–310

    Article  Google Scholar 

  19. Sahiner UM, Birben E, Erzurum S et al (2018) Oxidative stress in asthma: part of the puzzle. Pediatr Allergy Immunol 29:789–800

    Article  Google Scholar 

  20. Wright RJ (2011) Psychological stress: a social pollutant that may enhance environmental risk. Am J Respir Crit Care Med 184:752–754

    Article  Google Scholar 

  21. Haczku A, Panettieri RA Jr (2010) Social stress and asthma: the role of corticosteroid insensitivity. J Allergy Clin Immunol 125:550–558

    Article  Google Scholar 

  22. Miller BD, Wood BL (1994) Psychophysiologic reactivity in asthmatic children: a cholinergically mediated confluence of pathways. J Am Acad Child Adolesc Psychiatry 33:1236–1245

    Article  CAS  Google Scholar 

  23. Fahy JV (2015) Type 2 inflammation in asthma--present in most, absent in many. Nat Rev Immunol 15:57–65

    Article  CAS  Google Scholar 

  24. Hargreave FE, Dolovich J, O’Byrne PM et al (1986) J Allergy Clin Immunol 78:825–832

    Article  CAS  Google Scholar 

  25. Woodruff PG, Modrek B, Choy DF et al (2009) T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med 180:388–395

    Article  CAS  Google Scholar 

  26. Bailey MT, Kierstein S, Sharma S et al (2009) Social stress enhances allergen-induced airway inflammation in mice and inhibits corticosteroid responsiveness of cytokine production. J Immunol 182:7888–7896

    Article  CAS  Google Scholar 

  27. McDonnell WF, Stewart PW, Smith MV et al (2012) Prediction of lung function response for populations exposed to a wide range of ozone conditions. Inhal Toxicol 24:619–633

    Article  CAS  Google Scholar 

  28. Wang T, Xue L, Brimblecombe P et al (2017) Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects. Sci Total Environ 575:1582–1596

    Article  CAS  Google Scholar 

  29. Wright JR (2005) Immunoregulatory functions of surfactant proteins. Nat Rev Immunol 5:58–68

    Article  CAS  Google Scholar 

  30. Flayer CH, Larson ED, Joseph A et al (2020) Ozone-induced enhancement of airway hyperreactivity in rhesus macaques: effects of antioxidant treatment. J Allergy Clin Immunol 145:312–323

    Article  CAS  Google Scholar 

  31. Starosta V, Griese M (2006) Oxidative damage to surfactant protein D in pulmonary diseases. Free Radic Res 40:419–425

    Article  CAS  Google Scholar 

  32. Hazenberg MD, Spits H (2014) Human innate lymphoid cells. Blood 124:700–709

    Article  CAS  Google Scholar 

  33. Simoni Y, Fehlings M, Kloverpris HN et al (2017) Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. Immunity 46:148–161

    Article  CAS  Google Scholar 

  34. Huang Y, Mao K, Chen X et al (2018) S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science 359:114–119

    Article  CAS  Google Scholar 

Download references

Acknowledgement

R21AI116121 and 1R41AI132012-01 (Angela Haczku), CNPRC base operating grant P51OD011107 (Prasant Mohapatra), and K01OD024782 (Christopher Royer).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Haczku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Royer, C., Miller, L.A., Haczku, A. (2022). A Novel Nonhuman Primate Model of Nonatopic Asthma. In: Gorska, M.M. (eds) Asthma. Methods in Molecular Biology, vol 2506. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2364-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2364-0_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2363-3

  • Online ISBN: 978-1-0716-2364-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics