Skip to main content

Protocols to Measure Oxidative Stress and DNA Damage in Asthma

  • Protocol
  • First Online:
Asthma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2506))

Abstract

Asthma is associated with oxidative stress and oxidative damage of biomolecules, including DNA. Here, we describe the protocols to quantify reactive oxygen species (ROS) and oxidative stress markers in a mouse model of allergic airway inflammation. We also provide detailed methods to measure DNA damage by long-run real-time PCR for DNA-damage quantification (LORD-Q) assay and gene-specific DNA damage analyses by long amplicon (LA)-qPCR. Additionally, we describe methods to quantify oxidized DNA base lesions in lung genomic DNA by mass spectrometry, and to measure enzymatic activity of 8-oxoguanine DNA glycosylase (OGG1). Using these methods, the levels of oxidative stress and DNA damage in allergic inflammation and asthma can be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Montuschi P, Corradi M, Ciabattoni G et al (1999) Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. Am J Respir Crit Care Med 160:216–220

    Article  CAS  Google Scholar 

  2. Wood LG, Fitzgerald DA, Gibson PG et al (2000) Lipid peroxidation as determined by plasma isoprostanes is related to disease severity in mild asthma. Lipids 35:967–974

    Article  CAS  Google Scholar 

  3. Carraro S, Cogo PE, Isak I et al (2010) EIA and GC/MS analysis of 8-isoprostane in EBC of children with problematic asthma. Eur Respir J 35:1364–1369

    Article  CAS  Google Scholar 

  4. Calhoun WJ, Reed HE, Moest DR (1992) Enhanced superoxide production by alveolar macrophages and air-space cells, airway inflammation, and alveolar macrophage density changes after segmental antigen bronchoprovocation in allergic subjects. Am Rev Respir Dis 145:317–325

    Article  CAS  Google Scholar 

  5. Dworski R, Murray JJ, Roberts LJ 2nd et al (1999) Allergen-induced synthesis of F(2)-isoprostanes in atopic asthmatics. Evidence for oxidant stress. Am J Respir Crit Care Med 160:1947–1951

    Article  CAS  Google Scholar 

  6. Brussino L, Badiu I, Sciascia S et al (2010) Oxidative stress and airway inflammation after allergen challenge evaluated by exhaled breath condensate analysis. Clin Exp Allergy 40:1642–1647

    Article  CAS  Google Scholar 

  7. Dworski R, Roberts LJ 2nd, Murray JJ et al (2001) Assessment of oxidant stress in allergic asthma by measurement of the major urinary metabolite of F2-isoprostane, 15-F2t-IsoP (8-iso-PGF2alpha). Clin Exp Allergy 31:387–390

    Article  CAS  Google Scholar 

  8. Hosoki K, Redding D, Itazawa T et al (2017) Innate mechanism of pollen- and cat dander-induced oxidative stress and DNA damage in the airways. J Allergy Clin Immunol 140:1436–1439 e1435

    Article  CAS  Google Scholar 

  9. Hosoki K, Jaruga P, Itazawa T et al (2018) Excision release of 5? hydroxycytosine oxidatively induced DNA base lesions from the lung genome by cat dander extract challenge stimulates allergic airway inflammation. Clin Exp Allergy 48:1676–1687

    Article  CAS  Google Scholar 

  10. Boldogh I, Bacsi A, Choudhury BK et al (2005) ROS generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation. J Clin Invest 115:2169–2179

    Article  CAS  Google Scholar 

  11. Bacsi A, Dharajiya N, Choudhury BK et al (2005) Effect of pollen-mediated oxidative stress on immediate hypersensitivity reactions and late-phase inflammation in allergic conjunctivitis. J Allergy Clin Immunol 116:836–843

    Article  CAS  Google Scholar 

  12. Aguilera-Aguirre L, Bacsi A, Saavedra-Molina A et al (2009) Mitochondrial dysfunction increases allergic airway inflammation. J Immunol 183:5379–5387

    Article  CAS  Google Scholar 

  13. Kruzel ML, Bacsi A, Choudhury B et al (2006) Lactoferrin decreases pollen antigen-induced allergic airway inflammation in a murine model of asthma. Immunology 119:159–166

    Article  CAS  Google Scholar 

  14. Dharajiya N, Choudhury BK, Bacsi A et al (2007) Inhibiting pollen reduced nicotinamide adenine dinucleotide phosphate oxidase-induced signal by intrapulmonary administration of antioxidants blocks allergic airway inflammation. J Allergy Clin Immunol 119:646–653

    Article  CAS  Google Scholar 

  15. Csillag A, Boldogh I, Pazmandi K et al (2010) Pollen-induced oxidative stress influences both innate and adaptive immune responses via altering dendritic cell functions. J Immunol 184:2377–2385

    Article  CAS  Google Scholar 

  16. Swindle EJ, Metcalfe DD, Coleman JW (2004) Rodent and human mast cells produce functionally significant intracellular reactive oxygen species but not nitric oxide. J Biol Chem 279:48751–48759

    Article  CAS  Google Scholar 

  17. Swindle EJ, Coleman JW, DeLeo FR et al (2007) FcepsilonRI- and Fcgamma receptor-mediated production of reactive oxygen species by mast cells is lipoxygenase- and cyclooxygenase-dependent and NADPH oxidase-independent. J Immunol 179:7059–7071

    Article  CAS  Google Scholar 

  18. Plager DA, Henke SA, Matsuwaki Y et al (2009) Pimecrolimus reduces eosinophil activation associated with calcium mobilization. Int Arch Allergy Immunol 149:119–126

    Article  CAS  Google Scholar 

  19. Dherin C, Radicella JP, Dizdaroglu M et al (1999) Excision of oxidatively damaged DNA bases by the human alpha-hOgg1 protein and the polymorphic alpha-hOgg1(Ser326Cys) protein which is frequently found in human populations. Nucleic Acids Res 27:4001–4007

    Article  CAS  Google Scholar 

  20. Audebert M, Radicella JP, Dizdaroglu M (2000) Effect of single mutations in the OGG1 gene found in human tumors on the substrate specificity of the Ogg1 protein. Nucleic Acids Res 28:2672–2678

    Article  CAS  Google Scholar 

  21. Hazra TK, Kow YW, Hatahet Z, Imhoff B, Boldogh I, Mokkapati SK, Mitra S, Izumi T (2002) Identification and characterization of a novel human DNA glycosylase for repair of cytosine-derived lesions. J Biol Chem 277:30417–30420

    Article  CAS  Google Scholar 

  22. Brasier AR, Tian B, Jamaluddin M et al (2011) RelA Ser276 phosphorylation-coupled Lys310 acetylation controls transcriptional elongation of inflammatory cytokines in respiratory syncytial virus infection. J Virol 85:11752–11769

    Article  Google Scholar 

  23. Jamaluddin M, Tian B, Boldogh I et al (2009) Respiratory syncytial virus infection induces a reactive oxygen species-MSK1-phospho-Ser-276 RelA pathway required for cytokine expression. J Virol 83:10605–10615

    Article  CAS  Google Scholar 

  24. Nowak DE, Tian B, Jamaluddin M et al (2008) RelA Ser276 phosphorylation is required for activation of a subset of NF-kappaB-dependent genes by recruiting cyclin-dependent kinase 9/cyclin T1 complexes. Mol Cell Biol 28:3623–3638

    Article  CAS  Google Scholar 

  25. Shukla A, Timblin C, BeruBe K et al (2000) Inhaled particulate matter causes expression of nuclear factor (NF)-kappaB-related genes and oxidant-dependent NF-kappaB activation in vitro. Am J Respir Cell Mol Biol 23:182–187

    Article  CAS  Google Scholar 

  26. Yao H, Yang SR, Kode A et al (2007) Redox regulation of lung inflammation: role of NADPH oxidase and NF-kappaB signalling. Biochem Soc Trans 35:1151–1155

    Article  CAS  Google Scholar 

  27. Chakraborty A, Wakamiya M, Venkova-Canova T et al (2015) Neil2-null mice accumulate oxidized DNA bases in the transcriptionally active sequences of the genome and are susceptible to innate inflammation. J Biol Chem 290:24636–24648

    Article  CAS  Google Scholar 

  28. Tapryal N, Shahabi S, Chakraborty A et al (2021) Intrapulmonary administration of purified NEIL2 abrogates NF-kappaB-mediated inflammation. J Biol Chem 296:100723

    Google Scholar 

  29. Li G, Yuan K, Yan C, et al (2012) 8-Oxoguanine-DNA glycosylase 1 deficiency modifies allergic airway inflammation by regulating STAT6 and IL-4 in cells and in mice. Free Radic Biol Med 52(2):392–401

    Google Scholar 

  30. Bacsi A, Aguilera-Aguirre L, Szczesny B et al (2012) Down-regulation of 8-oxoguanine DNA glycosylase 1 expression in the airway epithelium ameliorates allergic lung inflammation. DNA Repair (Amst) 12:18–26

    Article  Google Scholar 

  31. Li G, Yuan K, Yan C et al (2012) 8-Oxoguanine-DNA glycosylase 1 deficiency modifies allergic airway inflammation by regulating STAT6 and IL-4 in cells and in mice. Free Radic Biol Med 52:392–401

    Article  CAS  Google Scholar 

  32. Hosoki K, Tapryal N, Chakraborty A (2019) NEIL2 protects against cat dander-induced eosinophilic airway inflammation. J Allergy Clin Immunol 143:AB291

    Article  Google Scholar 

  33. Lehle S, Hildebrand DG, Merz B et al (2014) LORD-Q: a long-run real-time PCR-based DNA-damage quantification method for nuclear and mitochondrial genome analysis. Nucleic Acids Res 42:e41

    Article  CAS  Google Scholar 

  34. Yamazaki T, Kawai C, Yamauchi A et al (2011) A highly sensitive chemiluminescence assay for superoxide detection and chronic granulomatous disease diagnosis. Trop Med Health 39:41–45

    Article  Google Scholar 

  35. Chakraborty A, Tapryal N, Venkova T et al (2016) Classical non-homologous end-joining pathway utilizes nascent RNA for error-free double-strand break repair of transcribed genes. Nat Commun 7:13049

    Article  CAS  Google Scholar 

  36. Chakraborty A, Tapryal N, Venkova T et al (2020) Deficiency in classical nonhomologous end-joining-mediated repair of transcribed genes is linked to SCA3 pathogenesis. Proc Natl Acad Sci U S A 117:8154–8165

    Article  CAS  Google Scholar 

  37. Chatterjee A, Saha S, Chakraborty A et al (2015) The role of the mammalian DNA end-processing enzyme polynucleotide kinase 3′-phosphatase in spinocerebellar ataxia type 3 pathogenesis. PLoS Genet 11:e1004749

    Article  Google Scholar 

  38. Ayala-Torres S, Chen Y, Svoboda T et al (2000) Analysis of gene-specific DNA damage and repair using quantitative polymerase chain reaction. Methods 22:135–147

    Article  CAS  Google Scholar 

  39. Reddy PT, Jaruga P, Kirkali G et al (2013) Identification and quantification of human DNA repair protein NEIL1 by liquid chromatography/isotope-dilution tandem mass spectrometry. J Proteome Res 12:1049–1061

    Article  CAS  Google Scholar 

  40. Dou H, Mitra S, Hazra TK (2003) Repair of oxidized bases in DNA bubble structures by human DNA glycosylases NEIL1 and NEIL2. J Biol Chem 278:49679–49684

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Pawel Jaruga, Dr. Erdem Coskun, and Dr. Miral Dizdaroglu (Biomolecular Measurement Division National Institute of Standards and Technology, Gaithersburg, Maryland, USA) for their scientific input and for critical writing and editing of the manuscript. We also thank Dr. Nisha Tapryal (Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Texas Medical Branch, Galveston, Texas, USA) for her scientific input and for critical writing and editing of the manuscript.

This research was supported in parts by the National Heart, Lung, and Blood Institute (grant nos. 5R01HL145477-02 and 3R01HL145477-01S1) and the Department of Defense (grant no. PR171425 W81XWH-18-1-0743).

Disclosure of Potential Conflict of Interest

The authors declare that they have no relevant conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjiv Sur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hosoki, K., Chakraborty, A., Hazra, T.K., Sur, S. (2022). Protocols to Measure Oxidative Stress and DNA Damage in Asthma. In: Gorska, M.M. (eds) Asthma. Methods in Molecular Biology, vol 2506. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2364-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2364-0_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2363-3

  • Online ISBN: 978-1-0716-2364-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics