Skip to main content

RNA In Situ Hybridization of Paraffin Sections to Characterize the Multicellular Compartmentation of Plant Secondary Metabolisms

  • Protocol
  • First Online:
Catharanthus roseus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2505))

  • 810 Accesses

Abstract

As a mean to cope with their potential cytotoxicity for the host plant, secondary metabolisms are often sequestered within specific cell types. This spatial organization may reach complex sequential multicellular compartmentation. The most complex example so far characterized is the sequential multicellular biosynthesis of the anticancer monoterpene indole alkaloids in Catharanthus roseus. RNA in situ hybridization has proven a key technological approach to unravel this complex spatial organization. Pioneer work in 1999 discovered the involvement of epidermis and laticifer/idioblasts in the intermediate and late steps of the pathway, respectively. The localization of the early steps of the pathway to the internal phloem-associated parenchyma later came to complete the three-tissular block organization of the pathway. Since then, RNA in situ hybridization was routinely used to map the gene expression profile of most of the nearly 30 genes involved in this pathway. We introduce here a comparison of advantages and drawbacks of in situ hybridization and more popular promoter: GUS strategies. Two main advantages of in situ hybridization are the suitability to any plant species and the direct localization of transcripts rather than the localization of a promoter activity. We provide a step-by-step protocol describing every details allowing to reach a medium throughput including riboprobe synthesis, paraffin-embedded plant tissue array preparation, prehybridization, in situ hybridization, stringent washing and immunodetection of hybridized probes, and imaging steps. This should be helpful for new comers willing to domesticate the technique. This protocol has no species limitation and is particularly adapted to the increasingly studied model, nonmodel species, nonamenable to promoter::GUS transformation, such as C. roseus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bird DA, Franceschi VR, Facchini PJ (2003) A tale of three cell types: alkaloid biosynthesis is localized to sieve elements in opium poppy. Plant Cell 15:2626–2635. https://doi.org/10.1105/tpc.015396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Courdavault V, Papon N, Clastre M, Giglioli-Guivarc’h N, St-Pierre B, Burlat V (2014) A look inside an alkaloid multisite plant: the Catharanthus logistics. Curr Opin Plant Biol 19:43–50. https://doi.org/10.1016/j.pbi.2014.03.010

    Article  CAS  PubMed  Google Scholar 

  3. Murata J, De Luca V (2005) Localization of tabersonine 16-hydroxylase and 16-OH tabersonine-16-O-methyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus. Plant J 44:581–594. https://doi.org/10.1111/j.1365-313X.2005.02557.x

    Article  CAS  PubMed  Google Scholar 

  4. Samanani N, Alcantara J, Bourgault R, Zulak KG, Facchini PJ (2006) The role of phloem sieve elements and laticifers in the biosynthesis and accumulation of alkaloids in opium poppy. Plant J 47:547–563. https://doi.org/10.1111/j.1365-313X.2006.02801.x

    Article  CAS  PubMed  Google Scholar 

  5. Burlat V, Oudin A, Courtois M, Rideau M, St-Pierre B (2004) Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites. Plant J 38:131–141. https://doi.org/10.1111/j.1365-313X.2004.02030.x

    Article  CAS  PubMed  Google Scholar 

  6. Oudin A et al (2007) Spatial distribution and hormonal regulation of gene products from methyl erythritol phosphate and monoterpene-secoiridoid pathways in Catharanthus roseus. Plant Mol Biol 65:13–30. https://doi.org/10.1007/s11103-007-9190-7

    Article  CAS  PubMed  Google Scholar 

  7. St-Pierre B, Vazquez-Flota FA, De Luca V (1999) Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 11:887–900. https://doi.org/10.1105/tpc.11.5.887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Besseau S et al (2013) A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus roseus. Plant Physiol 163:1792–1803. https://doi.org/10.1104/pp.113.222828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Geu-Flores F et al (2012) An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 492:138–142. https://doi.org/10.1038/nature11692

    Article  CAS  PubMed  Google Scholar 

  10. Guirimand G et al (2010) Strictosidine activation in Apocynaceae: towards a “nuclear time bomb”? BMC Plant Biol 10:182. https://doi.org/10.1186/1471-2229-10-182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guirimand G et al (2011) The subcellular organization of strictosidine biosynthesis in Catharanthus roseus epidermis highlights several trans-tonoplast translocations of intermediate metabolites. FEBS J 278:749–763. https://doi.org/10.1111/j.1742-4658.2010.07994.x

    Article  CAS  PubMed  Google Scholar 

  12. Guirimand G et al (2012) A single gene encodes isopentenyl diphosphate isomerase isoforms targeted to plastids, mitochondria and peroxisomes in Catharanthus roseus. Plant Mol Biol 79:443–459. https://doi.org/10.1007/s11103-012-9923-0

    Article  CAS  PubMed  Google Scholar 

  13. Guirimand G et al (2011) Spatial organization of the vindoline biosynthetic pathway in Catharanthus roseus. J Plant Physiol 168:549–557. https://doi.org/10.1016/j.jplph.2010.08.018

    Article  CAS  PubMed  Google Scholar 

  14. Miettinen K et al (2014) The seco-iridoid pathway from Catharanthus roseus. Nat Commun 5:3606. https://doi.org/10.1038/ncomms4606

    Article  CAS  PubMed  Google Scholar 

  15. Guirimand G et al (2020) Cellular and subcellular compartmentation of the 2C-methyl-D-erythritol 4-phosphate pathway in the Madagascar periwinkle. Plan Theory 9:25. https://doi.org/10.3390/plants9040462

    Article  CAS  Google Scholar 

  16. Irmler S et al (2000) Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450CYP72A1 as secologanin synthase. Plant J 24:797–804. https://doi.org/10.1046/j.1365-313x.2000.00922.x

    Article  CAS  PubMed  Google Scholar 

  17. Parage C et al (2016) Class II cytochrome P450 reductase governs the biosynthesis of alkaloids. Plant Physiol 172:1563–1577. https://doi.org/10.1104/pp.16.00801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Courdavault V, Burlat V, St-Pierre B, Giglioli-Guivarc’h N (2005) Characterisation of CaaX-prenyltransferases in Catharanthus roseus: relationships with the expression of genes involved in the early stages of monoterpenoid biosynthetic pathway. Plant Sci 168:1097–1107. https://doi.org/10.1016/j.plantsci.2004.12.010

    Article  CAS  Google Scholar 

  19. Lemenager D et al (2005) Purification, molecular cloning, and cell-specific gene expression of the alkaloid-accumulation associated protein CrPS in Catharanthus roseus. J Exp Bot 56:1221–1228. https://doi.org/10.1093/jxb/eri116

    Article  CAS  PubMed  Google Scholar 

  20. Mahroug S, Courdavault V, Thiersault M, St-Pierre B, Burlat V (2006) Epidermis is a pivotal site of at least four secondary metabolic pathways in Catharanthus roseus aerial organs. Planta 223:1191–1200. https://doi.org/10.1007/s00425-005-0167-y

    Article  CAS  PubMed  Google Scholar 

  21. Poutrain P et al (2011) Molecular cloning and characterisation of two calmodulin isoforms of the Madagascar periwinkle Catharanthus roseus. Plant Biol 13:36–41. https://doi.org/10.1111/j.1438-8677.2010.00325.x

    Article  CAS  PubMed  Google Scholar 

  22. Munkert J et al (2015) Iridoid synthase activity is common among the plant progesterone 5 beta-reductase family. Mol Plant 8:136–152. https://doi.org/10.1016/j.molp.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  23. Sieburth LE, Meyerowitz EM (1997) Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell 9:355–365. https://doi.org/10.1105/tpc.9.3.355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luo B, Xue XY, Hu WL, Wang LJ, Chen XY (2007) An ABC transporter gene of Arabidopsis thaliana, AtWBC11, is involved in cuticle development and prevention of organ fusion. Plant Cell Physiol 48:1790–1802. https://doi.org/10.1093/pcp/pcm152

    Article  CAS  PubMed  Google Scholar 

  25. Simkin AJ et al (2013) Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. Phytochemistry 85:36–43. https://doi.org/10.1016/j.phytochem.2012.09.014

    Article  CAS  PubMed  Google Scholar 

  26. Hejatko J, Blilou I, Brewer PB, Friml J, Scheres B, Benkova E (2006) In situ hybridization technique for mRNA detection in whole mount Arabidopsis samples. Nat Protoc 1:1939–1946. https://doi.org/10.1038/nprot.2006.333

    Article  CAS  PubMed  Google Scholar 

  27. Gracas JP, Ranocha P, Vitorello VA, Savelli B, Jamet E, Dunand C, Burlat V (2020) The class III peroxidase encoding gene AtPrx62 positively and spatiotemporally regulates the low pH-induced cell death in Arabidopsis thaliana roots. Int J Mol Sci 21:18. https://doi.org/10.3390/ijms21197191

    Article  CAS  Google Scholar 

  28. Brewer PB, Heisler MG, Hejatko J, Friml J, Benkova E (2006) In situ hybridization for mRNA detection in Arabidopsis tissue sections. Nat Protoc 1:1462–1467. https://doi.org/10.1038/nprot.2006.226

    Article  CAS  PubMed  Google Scholar 

  29. Francoz E, Ranocha P, Pernot C, Le Ru A, Pacquit V, Dunand C, Burlat V (2016) Complementarity of medium-throughput in situ RNA hybridization and tissue-specific transcriptomics: case study of Arabidopsis seed development kinetics. Sci Rep 6:24644. https://doi.org/10.1038/srep24644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Francoz E, Ranocha P, Dunand C, Burlat V (2019) Medium-throughput RNA in situ hybridization of serial sections from paraffin-embedded tissue microarrays. Methods Mol Biol 1933:99–130. https://doi.org/10.1007/978-1-4939-9045-0_6

    Article  CAS  PubMed  Google Scholar 

  31. Jackson D (1992) In situ hybridisation in plants. In: Gurr SJ, McPherson MJ, Bowles DJ (eds) Molecular plant pathology: a practical approach. IRL Press at Oxford University, Oxford, pp 163–174

    Google Scholar 

  32. Francoz E (2015) Hybridation d’ARN in situ systématique de la famille multigénique des peroxydases de classe III durant le développement des graines d’Arabidopsis thaliana et étude fonctionnelle de AtPRX36 dans la dynamique pariétale des cellules sécrétrices de mucilage (MSC). PhD thesis, Toulouse University

    Google Scholar 

  33. Jacq A et al (2017) The Arabidopsis Lipid Transfer Protein 2 (AtLTP2) is involved in cuticle-cell wall interface integrity and in etiolated hypocotyl permeability. Front Plant Sci 8:263. https://doi.org/10.3389/fpls.2017.00263

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sambrook J, Fritsh E, Maniatis T (eds) (1989) Molecular cloning. A laboratory manual. Laboratory Press, Cold Spring Harbor

    Google Scholar 

  35. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baker M (2012) RNA imaging in situ. Nat Methods 9:787–790

    Article  CAS  Google Scholar 

  37. Schenborn ET, Mierendorf RC (1985) A novel transcription property of SP6 and T7 RNA-polymerases: dependence on template structure. Nucleic Acids Res 13:6223–6236. https://doi.org/10.1093/nar/13.17.6223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Université Paul Sabatier Toulouse 3, Centre National de la Recherche Scientifique (CNRS) and The Laboratoire. d’excellence (LABEX)” entitled TULIP (ANR-10-LABX-41) granted this work. Nanozoomer virtual microscopy was performed on the Toulouse Réseau Imagerie (TRI, FR3450). We thank Edith Francoz for some of the experiment photographs used in the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Burlat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

St-Pierre, B., Mahroug, S., Guirimand, G., Courdavault, V., Burlat, V. (2022). RNA In Situ Hybridization of Paraffin Sections to Characterize the Multicellular Compartmentation of Plant Secondary Metabolisms. In: Courdavault, V., Besseau, S. (eds) Catharanthus roseus. Methods in Molecular Biology, vol 2505. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2349-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2349-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2348-0

  • Online ISBN: 978-1-0716-2349-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics