Skip to main content

Extraction of Bile Acids from Biological Samples and Quantification Using Ultra-High-Performance Liquid Chromatography-Orbitrap Mass Spectrometry

  • Chapter
  • First Online:
Basic Protocols in Foods and Nutrition

Abstract

Bile acid (BA) has attracted significant attention because it is considered a metabolic regulator in the body. BA metabolism is modulated by dietary intervention and disease conditions. Here, we present a comprehensive BA measurement system used to enable an understanding of the BA distribution in the body. We also focused on BA extraction methods, such as organ, fluid, or semisolid samples, depending on sample characteristics. To precisely measure the BA composition, we introduced an ultra-high-performance liquid chromatography/orbitrap-mass spectrometry (UHPLC-Orbitrap MS) technique for BA analysis. This method enabled us to measure BA concentrations in various biological samples derived from experimental animals and humans similarly, and would be a useful tool for investigating the roles of BA in physiological and pathological events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fiorucci S, Distrutti E (eds) (2019) Bile acids and their receptors. Springer, Cham

    Google Scholar 

  2. de Aguiar Vallim TQ, Tarling EJ, Edwards PA (2013) Pleiotropic roles of bile acids in metabolism. Cell Metab 17:657–669

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yoshitsugu R, Kikuchi K, Iwaya H, Fujii N, Hori S, Lee DG, Ishizuka S (2019) Alteration of bile acid metabolism by a high-fat diet is associated with plasma transaminase activities and glucose intolerance in rats. J Nutr Sci Vitaminol 65:45–51

    Article  CAS  PubMed  Google Scholar 

  4. Lee DG, Hori S, Kohmoto O, Kitta S, Yoshida R, Tanaka Y, Shimizu H, Takahashi K, Nagura T, Uchino H, Fukiya S, Yokota A, Ishizuka S (2019) Ingestion of difructose anhydride III partially suppresses the deconjugation and 7α-dehydroxylation of bile acids in rats fed with a cholic acid-supplemented diet. Biosci Biotechnol Biochem 83:1329–1335

    Article  CAS  PubMed  Google Scholar 

  5. Hori S, Abe T, Lee DG, Fukiya S, Yokota A, Aso N, Shirouchi B, Sato M, Ishizuka S (2020) Association between 12α-hydroxylated bile acids and hepatic steatosis in rats fed a high-fat diet. J Nutr Biochem 83:108412

    Article  CAS  PubMed  Google Scholar 

  6. Kramer W, Stengelin S, Baringhaus KH, Enhsen A, Heuer H, Becker W, Corsiero D, Girbig F, Noll R, Weyland C (1999) Substrate specificity of the ileal and the hepatic Na+/bile acid cotransporters of the rabbit. I. Transport studies with membrane vesicles and cell lines expressing the cloned transporters. J Lipid Res 40:1604–1617

    Article  CAS  PubMed  Google Scholar 

  7. Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259

    Article  CAS  PubMed  Google Scholar 

  8. Marion S, Studer N, Desharnais L, Menin L, Escrig S, Meibom A, Hapfelmeier S, Bernier-Latmani R (2019) In vitro and in vivo characterization of Clostridium scindens bile acid transformations. Gut Microbes 10:481–503

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi S, Fukami T, Masuo Y, Brocker CN, Xie C, Krausz KW, Wolf CR, Henderson CJ, Gonzalez FJ (2016) Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans. J Lipid Res 57:2130–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eyssen HJ, De Pauw G, Van Eldere J (1999) Formation of hyodeoxycholic acid from muricholic acid and hyocholic acid by an unidentified gram-positive rod termed HDCA-1 isolated from rat intestinal microflora. Appl Environ Microbiol 65:3158–3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hagio M, Matsumoto M, Ishizuka S (2011) Bile acid analysis in various biological samples using ultra performance liquid chromatography/electrospray ionization-mass spectrometry (UPLC/ESI-MS). Methods Mol Biol 708:119–129

    Article  CAS  PubMed  Google Scholar 

  12. Griffiths WJ, Sjövall J (2010) Bile acids: analysis in biological fluids and tissues. J Lipid Res 51:23–41

    Article  PubMed  PubMed Central  Google Scholar 

  13. Locket PL, Gallaher DD (1989) An improved procedure for bile acid extraction and purification and tissue distribution in the rat. Lipids 24:221–223

    Article  CAS  PubMed  Google Scholar 

  14. Hagio M, Matsumoto M, Fukushima M, Hara H, Ishizuka S (2009) Improved analysis of bile acids in tissues and intestinal contents of rats using LC/ESI-MS. J Lipid Res 50:173–180

    Article  CAS  PubMed  Google Scholar 

  15. Hagio M, Matsumoto M, Yajima T, Hara H, Ishizuka S (2010) Voluntary wheel running exercise and dietary lactose concomitantly reduce proportion of secondary bile acids in rat feces. J Appl Physiol 109:663–668

    Article  CAS  PubMed  Google Scholar 

  16. Hagio M, Shimizu H, Joe GH, Takatsuki M, Shiwaku M, Xu H, Lee JY, Fujii N, Fukiya S, Hara H, Yokota A, Ishizuka S (2015) Diet supplementation with cholic acid promotes intestinal epithelial proliferation in rats exposed to γ-radiation. Toxicol Lett 232:246–252

    Article  CAS  PubMed  Google Scholar 

  17. Islam KB, Fukiya S, Hagio M, Fujii N, Ishizuka S, Ooka T, Ogura Y, Hayashi T, Yokota A (2011) Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141:1773–1781

    Article  CAS  PubMed  Google Scholar 

  18. Lee Y, Yoshitsugu R, Kikuchi K, Joe GH, Tsuji M, Nose T, Shimizu H, Hara H, Minamida K, Miwa K, Ishizuka S (2016) Combination of soya pulp and Bacillus coagulans lilac-01 improves intestinal bile acid metabolism without impairing the effects of prebiotics in rats fed a cholic acid-supplemented diet. Br J Nutr 116:603–610

    Article  CAS  PubMed  Google Scholar 

  19. Yoshitsugu R, Kikuchi K, Hori S, Iwaya H, Hagio M, Shimizu H, Hira T, Ishizuka S (2020) Correlation between 12α-hydroxylated bile acids and insulin secretion during glucose tolerance tests in rats fed a high-fat and high-sucrose diet. Lipids Health Dis 19:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yoshitsugu R, Liu H, Kamo Y, Takeuchi A, Joe GH, Tada K, Kikuchi K, Fujii N, Kitta S, Hori S, Takatsuki M, Iwaya H, Tanaka Y, Shimizu H, Ishizuka S (2021) 12α-Hydroxylated bile acid enhances accumulation of adiponectin and immunoglobulin A in the rat ileum. Sci Rep 11:12939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hori S, Satake M, Kohmoto O, Takagi R, Okada K, Fukiya S, Yokota A, Ishizuka S (2021) Primary 12α-hydroxylated bile acids lower hepatic iron concentration in rats. J Nutr 151:523–530

    Article  PubMed  Google Scholar 

  22. Lee JY, Shimizu H, Hagio M, Fukiya S, Watanabe M, Tanaka Y, Joe GH, Iwaya H, Yoshitsugu R, Kikuchi K, Tsuji M, Baba N, Nose T, Tada K, Hanai T, Hori S, Takeuchi A, Furukawa Y, Shirouchi B, Sato M, Ooka T, Ogura Y, Hayashi T, Yokota A, Ishizuka S (2020) 12α-Hydroxylated bile acid induces hepatic steatosis with dysbiosis in rats. Biochim Biophys Acta Mol Cell Biol Lipids 1865:158811

    Article  CAS  PubMed  Google Scholar 

  23. Maegawa K, Koyama H, Fukiya S, Yokota A, Ueda K, Ishizuka S (2021) Dietary raffinose ameliorates hepatic lipid accumulation induced by cholic acid via modulation of enterohepatic bile acid circulation in rats. Br J Nutr:1–10. https://doi.org/10.1017/S0007114521002610

  24. Hashimoto N, Matsui I, Ishizuka S, Inoue K, Matsumoto A, Shimada K, Hori S, Lee DG, Yasuda S, Katsuma Y, Kajimoto S, Doi Y, Yamaguchi S, Kubota K, Oka T, Sakaguchi Y, Takabatake Y, Hamano T, Isaka Y (2020) Lithocholic acid increases intestinal phosphate and calcium absorption in a vitamin D receptor dependent but transcellular pathway independent manner. Kidney Int 97:1164–1180

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Ishizuka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hori, S. et al. (2022). Extraction of Bile Acids from Biological Samples and Quantification Using Ultra-High-Performance Liquid Chromatography-Orbitrap Mass Spectrometry. In: Betim Cazarin, C.B. (eds) Basic Protocols in Foods and Nutrition. Methods and Protocols in Food Science . Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2345-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2345-9_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2344-2

  • Online ISBN: 978-1-0716-2345-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics