Skip to main content

Microbiome Evaluation

  • Chapter
  • First Online:
Basic Protocols in Foods and Nutrition

Abstract

Various studies suggest that the intestinal microbiome may modulate the risk of developing different chronic diseases, including type 2 diabetes, allergy, cardiovascular disease, and colorectal cancer (CRC). Next-generation sequencing techniques have allowed a better understanding of the metabolic, physiological, and ecological roles of the microbiome. However, different conditions can affect the microbiome analysis, including experimental model, sample processing, sequencing, assembly, binning, annotation, and visualization. Besides, in order to translate microbiome research into clinical application, it is necessary to address host–microbe and microbe–microbe interactions. In this sense, animal models in association with “omics” approaches are indispensable for investigating host–microbiome interactions. Therefore, this chapter reviews the optimal approach to study the gut microbiome in experimental models highlighting their benefits, drawbacks, and limitations, as well as it provides an efficient protocol to determine the gut microbial community diversity and composition from animal stool samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fritz JV, Desai MS, Shah P, Schneider JG, Wilmes P (2013) From meta-omics to causality: experimental models for human microbiome research. Microbiome 1(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  2. Al-Asmakh M, Zadjali F (2015) Use of germ-free animal models in microbiota-related research. J Microbiol Biotechnol 25(10):1583–1588

    Article  PubMed  Google Scholar 

  3. Lam YY, Zhang C, Zhao L (2018) Causality in dietary interventions-building a case for gut microbiota. Genome Med 10(1):62

    Article  PubMed  PubMed Central  Google Scholar 

  4. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M et al (2005) Diversity of the human intestinal microbial flora. Science (New York, NY) 308(5728):1635–1638

    Article  Google Scholar 

  5. Gibbons RJ, Socransky SS, de Araujo WC, van Houte J (1964) Studies of the predominant cultivable microbiota of dental plaque. Arch Oral Biol 9(3):365–370

    Article  CAS  PubMed  Google Scholar 

  6. Parker RB, Snyder ML (1961) Interactions of the oral microbiota. I. A system for the defined study of mixed cultures. Proc Soc Exp Biol Med (New York, NY) 108:749–752

    Article  CAS  Google Scholar 

  7. Tremblay J, Singh K, Fern A, Kirton ES, He S, Woyke T et al (2015) Primer and platform effects on 16S rRNA tag sequencing. Front Microbiol 6:771

    PubMed  PubMed Central  Google Scholar 

  8. Woo PCY, Lau SKP, Teng JLL, Tse H, Yuen KY (2008) Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect 14(10):908–934

    Article  CAS  PubMed  Google Scholar 

  9. Yu H, Braun P, Yildirim MA, Lemmens I, Venkatesan K, Sahalie J et al (2008) High-quality binary protein interaction map of the yeast interactome network. Science (New York, NY) 322(5898):104–110

    Article  CAS  Google Scholar 

  10. De Filippis F, Parente E, Ercolini D (2017) Metagenomics insights into food fermentations. Microb Biotechnol 10(1):91–102

    Article  PubMed  Google Scholar 

  11. Raja HA, Miller AN, Pearce CJ, Oberlies NH (2017) Fungal identification using molecular tools: a primer for the natural products research community. J Nat Prod 80(3):756–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gilbert JA, Dupont CL (2011) Microbial metagenomics: beyond the genome. Annu Rev Mar Sci 3:347–371

    Article  Google Scholar 

  13. Escobar-Zepeda A, Vera-Ponce de León A, Sanchez-Flores A (2015) The road to metagenomics: from microbiology to DNA sequencing technologies and bioinformatics. Front Genet 6:348

    Article  PubMed  PubMed Central  Google Scholar 

  14. Madhavan A, Sindhu R, Parameswaran B, Sukumaran RK, Pandey A (2017) Metagenome analysis: a powerful tool for enzyme bioprospecting. Appl Biochem Biotechnol 183(2):636–651

    Article  CAS  PubMed  Google Scholar 

  15. Kristensen DM, Mushegian AR, Dolja VV, Koonin EV (2010) New dimensions of the virus world discovered through metagenomics. Trends Microbiol 18(1):11–19

    Article  CAS  PubMed  Google Scholar 

  16. Franzosa EA, Morgan XC, Segata N, Waldron L, Reyes J, Earl AM et al (2014) Relating the metatranscriptome and metagenome of the human gut. Proc Natl Acad Sci U S A 111(22):E2329–E2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77(4):1153–1161

    Article  CAS  PubMed  Google Scholar 

  18. Wang ZK, Yang YS, Chen Y, Yuan J, Sun G, Peng LH (2014) Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease. World J Gastroenterol 20(40):14805–14820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wilmes P, Heintz-Buschart A, Bond PL (2015) A decade of metaproteomics: where we stand and what the future holds. Proteomics 15(20):3409–3417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Petriz BA, Franco OL (2017) Metaproteomics as a complementary approach to gut microbiota in health and disease. Front Chem 5:4

    Article  PubMed  PubMed Central  Google Scholar 

  21. Douglas AE (2019) Simple animal models for microbiome research. Nat Rev Microbiol 17(12):764–775

    Article  CAS  PubMed  Google Scholar 

  22. Animal Models for Microbiome Research: Advancing Basic and Translational Science: Proceedings of a Workshop. Washington, DC: 2018 by the National Academy of Sciences; 2018.

    Google Scholar 

  23. Robertson SJ, Lemire P, Maughan H, Goethel A, Turpin W, Bedrani L et al (2019) Comparison of co-housing and littermate methods for microbiota standardization in mouse models. Cell Rep 27(6):1910–9.e2

    Article  CAS  PubMed  Google Scholar 

  24. Stappenbeck TS, Virgin HW (2016) Accounting for reciprocal host–microbiome interactions in experimental science. Nature 534(7606):191–199

    Article  CAS  PubMed  Google Scholar 

  25. McCoy KD, Geuking MB, Ronchi F (2017) Gut microbiome standardization in control and experimental mice. Curr Protoc Immunol 117:23.1.1–231.13

    Article  Google Scholar 

  26. Kennedy EA, King KY, Baldridge MT (2018) Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. Front Physiol 9:1534

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bayer F, Ascher S, Pontarollo G, Reinhardt C (2019) Antibiotic treatment protocols and germ-free mouse models in vascular research. Front Immunol 10:2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kennedy NA, Walker AW, Berry SH, Duncan SH, Farquarson FM, Louis P, Thomson J, UK IBD Genetics Consortium (2014) The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing. PLoS One 9(2):e88982

    Article  PubMed  PubMed Central  Google Scholar 

  29. Peng X, Yu KQ, Deng GH, Jiang YX, Wang Y, Zhang GX, Zhou HW (2013) Comparison of direct boiling method with commercial kits for extracting fecal microbiome DNA by Illumina sequencing of 16S rRNA tags. J Microbiol Methods 95(3):455–462

    Article  CAS  PubMed  Google Scholar 

  30. Henderson G, Cox F, Kittelmann S, Miri VH, Zethof M, Noel SJ, Waghorn GC, Janssen PH (2013) Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities. PLoS One 8(9):e74787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Claassen S, du Toit E, Kaba M, Moodley C, Zar HJ, Nicol MP (2013) A comparison of the efficiency of five different commercial DNA extraction kits for extraction of DNA from faecal samples. J Microbiol Methods 94(2):103–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Deng MY, Wang H, Ward GB, Beckham TR, McKenna TS (2005) Comparison of six RNA extraction methods for the detection of classical swine fever virus by real-time and conventional reverse transcription-PCR. J Vet Diagn Investig 17(6):574–578

    Article  Google Scholar 

  33. Xiang X, Qiu D, Hegele RD, Tan WC (2001) Comparison of different methods of total RNA extraction for viral detection in sputum. J Virol Methods 94(1–2):129–135

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work received financial support from Junta de Andalucía (CTS 164), and by Instituto de Salud Carlos III (PI19/1058) with funds from the European Union. CIBER-EHD is funded by Instituto de Salud Carlos III. A. Rodriguez-Nogales is a postdoctoral fellow of Instituto de Salud Carlos III (Miguel Servet Program); A.J. Ruiz-Malagon is a predoctoral fellow from University of Granada (Programa de Doctorado: Medicina Clínica y Salud Pública); J.A Molina-Tijeras is a predoctoral fellow from Instituto de Salud Carlos III (PFIS program) (Programa de Doctorado: Nutrición y Ciencias de los Alimentos).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Gálvez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodríguez-Nogales, A., Ruiz-Malagón, A.J., Molina-Tijeras, J.A., Rodríguez-Cabezas, M.E., Gálvez, J. (2022). Microbiome Evaluation. In: Betim Cazarin, C.B. (eds) Basic Protocols in Foods and Nutrition. Methods and Protocols in Food Science . Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2345-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2345-9_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2344-2

  • Online ISBN: 978-1-0716-2345-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics