Skip to main content

Time-Resolved UV-VIS Spectroscopy of Microbial Rhodopsins

  • Protocol
  • First Online:
Rhodopsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2501))

  • 1006 Accesses

Abstract

Absorption of light quanta by microbial rhodopsins (or more generally by retinal proteins) leads to conversion of the light energy to the generation of transmembrane anion or cation gradients, optically gated channels, or signal states in photoreception. All these processes are accompanied by series of reaction steps with half-times ranging from femtoseconds to seconds or longer (photocycles). The number of these steps and their kinetic and spectral properties are the essential experimental information required for determination of the mechanism of light energy conversion in these proteins. Here we describe experiments and data analysis providing this information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chizhov I, Chernavskii DS, Engelhard M et al (1996) Spectrally silent transitions in the bacteriorhodopsin photocycle. Biophys J 71:2329–2345

    Article  CAS  Google Scholar 

  2. Bratanov D, Kovalev K, Machtens J et al (2019) Unique structure and function of viral rhodopsins. Nat Commun 10:4939

    Article  Google Scholar 

  3. Shevchenko V, Mager T, Kovalev K et al (2017) Inward H+ pump xenorhodopsin: mechanism and alternative optogenetic approach. Sci Adv 3:e1603187

    Article  Google Scholar 

  4. Kovalev K, Astashkin R, Gushchin I et al (2020) Molecular mechanism of light-driven sodium pumping. Nat Commun 11:2137

    Article  CAS  Google Scholar 

  5. Kovalev K, Volkov D, Astashkin R et al (2020) High-resolution structural insights into the heliorhodopsin family. Proc Natl Acad Sci 117:4131–4141

    Article  CAS  Google Scholar 

  6. Zabelskii D, Alekseev A, Kovalev K et al (2020) Viral channelrhodopsins: calcium-dependent Na+/K+ selective light-gated channels. bioRxiv 2020.02.14.949966

    Google Scholar 

  7. Chizhov I (2013) Encyclopedia of biophysics. In: Robers G (ed) Encyclopedia of biophysics. Springer-Verlag, Berlin, pp 765–768

    Chapter  Google Scholar 

  8. Chizhov I, Schmies G, Seidel R et al (1998) The photophobic receptor from natronobacterium pharaonis: temperature and pH dependencies of the photocycle of sensory rhodopsin II. Biophys J 75:999–1009

    Article  CAS  Google Scholar 

  9. Chizhov I, Engelhard M (2001) Temperature and halide dependence of the photocycle of halorhodopsin from Natronobacterium pharaonis. Biophys J 81:1600–1612

    Article  CAS  Google Scholar 

  10. Klink BU, Winter R, Engelhard M et al (2002) Pressure dependence of the photocycle kinetics of bacteriorhodopsin. Biophys J 83:3490–3498

    Article  CAS  Google Scholar 

  11. Friedrich T, Geibel S, Kalmbach R et al (2002) Proteorhodopsin is a light-driven proton pump with variable vectoriality. J Mol Biol 321:821–838

    Article  CAS  Google Scholar 

  12. Chizhov I, Zorn B, Manstein DJ et al (2013) Kinetic and thermodynamic analysis of the light-induced processes in plant and cyanobacterial phytochromes. Biophys J 105:2210–2220

    Article  CAS  Google Scholar 

  13. Lozier RH, Bogomolni RA, Stoeckenius W (1975) Bacteriorhodopsin: a light-driven proton pump in halobacterium halobium. Biophys J 15:955–962

    Google Scholar 

  14. Bulavin LA, Mikhailov AE, Kuzmichev PK et al (2020) Influence of cholesterol concentration on bacteriorhodopsin photocycle. Ukr J Phys 65(9):778

    Google Scholar 

  15. Mueller K-H, Plesser T (1991) Variance reduction by simultaneous multi-exponential analysis of data sets from different experiments. Eur Biophys J 19:231–240

    Google Scholar 

  16. Nagle JF (1991) Solving complex photocycle kinetics. Theory and direct method. Biophys J 59:476–487

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Richard H. Lozier for his continuing interest in our work and assistance in editing. This work is supported by Russian Science Foundation, grant â„– 21-64-00018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Chizhov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Soloviov, D., Borshchevskiy, V., Chizhov, I. (2022). Time-Resolved UV-VIS Spectroscopy of Microbial Rhodopsins. In: Gordeliy, V. (eds) Rhodopsin. Methods in Molecular Biology, vol 2501. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2329-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2329-9_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2328-2

  • Online ISBN: 978-1-0716-2329-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics