Skip to main content

In Vivo and In Vitro Characterization of Cyclase and Phosphodiesterase Rhodopsins

  • Protocol
  • First Online:
Rhodopsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2501))

  • 871 Accesses

Abstract

Rhodopsins with enzymatic activity were found in microbes, in 2004 hypothetically from sequence data and since 2014 by experimental proof. So far three different types are known: light-activated guanylyl cyclase opsins (Cyclop) in fungi, light-inhibited two-component guanylyl cyclase opsins (2c-Cyclop) in green algae, and rhodopsin phosphodiesterases (RhoPDE) in choanoflagellates. They are integral membrane proteins with eight transmembrane helices (TM), different to the other microbial (type I) rhodopsins with 7 TM. Therefore, we propose a classification as type Ib rhodopsins for opsins with 8 TM and type Ia for the ones with 7 TM. To characterize those rhodopsins or their mutants, the expression in Xenopus laevis oocytes proved to be an efficient strategy. Functional analysis was initially performed “in oocyte” (in vivo), but more detailed characterization can be obtained with an in vitro assay. In this chapter, we describe procedures how to extract membranes from oocytes after cRNA microinjection and heterologous protein expression. Enzymatic activity of these membranes is then analyzed under different illumination conditions. In addition, fluorescent labeling of the rhodopsins is employed to quantify the expression level and the absolute activity of designed mutants. We discuss strengths and pitfalls, associated with this expression system, and strategies for selecting potentially useful optogenetic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gurdon JB, Lane CD, Woodland HR et al (1971) Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature 233:177–182

    Article  CAS  Google Scholar 

  2. Wagner CA, Friedrich B, Setiawan I et al (2000) The use of Xenopus laevis oocytes for the functional characterization of heterologously expressed membrane proteins. Cell Physiol Biochem 10:1–12

    Article  CAS  Google Scholar 

  3. Knox BE, Khorana H, Nasi E (1993) Light-induced currents in Xenopus oocytes expressing bovine rhodopsin. J Physiol 466:157–172

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Nagel G, Möckel B, Büldt G et al (1995) Functional expression of bacteriorhodopsin in oocytes allows direct measurement of voltage dependence of light induced H+ pumping. FEBS Lett 377:263–266

    Article  CAS  Google Scholar 

  5. Nagel G, Ollig D, Fuhrmann M et al (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398

    Article  CAS  Google Scholar 

  6. Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci 100:13940–13945

    Article  CAS  Google Scholar 

  7. Schröder-Lang S, Schwärzel M, Seifert R et al (2007) Fast manipulation of cellular cAMP level by light in vivo. Nat Methods 4:39–42

    Article  Google Scholar 

  8. Avelar GM, Schumacher RI, Zaini PA et al (2014) A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus. Curr Biol 24:1234–1240

    Article  CAS  Google Scholar 

  9. Gao S, Nagpal J, Schneider MW et al (2015) Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp. Nat Commun 6:1–12

    Google Scholar 

  10. Scheib U, Stehfest K, Gee CE et al (2015) The rhodopsin–guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling. Sci Signal 8:rs8

    Article  Google Scholar 

  11. Kateriya S, Nagel G, Bamberg E et al (2004) “Vision” in single-celled algae. Physiology 19:133–137

    Article  CAS  Google Scholar 

  12. Tian Y, Gao S, von der Heyde EL et al (2018) Two-component cyclase opsins of green algae are ATP-dependent and light-inhibited guanylyl cyclases. BMC Biol 16:1–18

    Article  Google Scholar 

  13. Tian Y, Nagel G, Gao S (2021) An engineered membrane-bound guanylyl cyclase with light-switchable activity. BMC Biol 19:1–9

    Article  Google Scholar 

  14. Tian Y, Gao S, Yang S et al (2018) A novel rhodopsin phosphodiesterase from Salpingoeca rosetta shows light-enhanced substrate affinity. Biochem J 475:1121–1128

    Article  CAS  Google Scholar 

  15. Yoshida K, Tsunoda SP, Brown LS et al (2017) A unique choanoflagellate enzyme rhodopsin exhibits light-dependent cyclic nucleotide phosphodiesterase activity. J Biol Chem 292:7531–7541

    Article  CAS  Google Scholar 

  16. Lamarche LB, Kumar RP, Trieu MM et al (2017) Purification and characterization of RhoPDE, a retinylidene/phosphodiesterase fusion protein and potential optogenetic tool from the choanoflagellate Salpingoeca rosetta. Biochemistry 56:5812–5822

    Article  CAS  Google Scholar 

  17. Ikuta T, Shihoya W, Sugiura M et al (2020) Structural insights into the mechanism of rhodopsin phosphodiesterase. Nat Commun 11:1–12

    Article  Google Scholar 

  18. Richter DJ, Fozouni P, Eisen MB et al (2018) Gene family innovation, conservation and loss on the animal stem lineage. elife 7:e34226

    Article  Google Scholar 

  19. Brunet T, Larson BT, Linden TA et al (2019) Light-regulated collective contractility in a multicellular choanoflagellate. Science 366:326–334

    Article  CAS  Google Scholar 

  20. Sugiura M, Tsunoda SP, Hibi M et al (2020) Molecular properties of new enzyme rhodopsins with phosphodiesterase activity. ACS Omega 5:10602–10609

    Article  CAS  Google Scholar 

  21. Tian Y, Yang S, Gao S (2020) Advances, perspectives and potential engineering strategies of light-gated phosphodiesterases for optogenetic applications. Int J Mol Sci 21:7544

    Article  CAS  Google Scholar 

  22. Möller S, Croning MD, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17:646–653

    Article  Google Scholar 

  23. Krogh A, Larsson B, Von Heijne G et al (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  Google Scholar 

  24. Drozdetskiy A, Cole C, Procter J et al (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Res 43:W389–W394

    Article  CAS  Google Scholar 

  25. Kerppola TK (2006) Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat Protoc 1:1278–1286

    Article  Google Scholar 

  26. Kerppola TK (2008) Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys 37:465–487

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Nagel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tian, Y., Gao, S., Nagel, G. (2022). In Vivo and In Vitro Characterization of Cyclase and Phosphodiesterase Rhodopsins. In: Gordeliy, V. (eds) Rhodopsin. Methods in Molecular Biology, vol 2501. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2329-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2329-9_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2328-2

  • Online ISBN: 978-1-0716-2329-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics