Skip to main content

Surface-Induced Dissociation for Protein Complex Characterization

  • Protocol
  • First Online:
Proteoform Identification

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2500))

Abstract

Native mass spectrometry (nMS) enables intact non-covalent complexes to be studied in the gas phase. nMS can provide information on composition, stoichiometry, topology, and, when coupled with surface-induced dissociation (SID), subunit connectivity. Here we describe the characterization of protein complexes by nMS and SID. Substructural information obtained using this method is consistent with the solved complex structure, when a structure exists. This provides confidence that the method can also be used to obtain substructural information for unknowns, providing insight into subunit connectivity and arrangements. High-energy SID can also provide information on proteoforms present. Previously SID has been limited to a few in-house modified instruments and here we focus on SID implemented within an in-house-modified Q Exactive UHMR. However, SID is currently commercially available within the Waters Select Series Cyclic IMS instrument. Projects are underway that involve the NIH-funded native MS resource (nativems.osu.edu), instrument vendors, and third-party vendors, with the hope of bringing the technology to more platforms and labs in the near future. Currently, nMS resource staff can perform SID experiments for interested research groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben-Nissan G, Sharon M (2018) The application of ion-mobility mass spectrometry for structure/function investigation of protein complexes. Curr Opin Chem Biol 42:25–33. https://doi.org/10.1016/j.cbpa.2017.10.026

    Article  CAS  PubMed  Google Scholar 

  2. Heck AJR, van den Heuvel RHH (2004) Investigation of intact protein complexes by mass spectrometry. Mass Spectrom Rev 23:368–389. https://doi.org/10.1002/mas.10081

    Article  CAS  PubMed  Google Scholar 

  3. Liko I, Allison TM, Hopper JT, Robinson CV (2016) Mass spectrometry guided structural biology. Curr Opin Struct Biol 40:136–144. https://doi.org/10.1016/j.sbi.2016.09.008

    Article  CAS  PubMed  Google Scholar 

  4. Eschweiler JD, Kerr R, Rabuck-Gibbons J, Ruotolo BT (2017) Sizing up protein–ligand complexes: the rise of structural mass spectrometry approaches in the pharmaceutical sciences. Annu Rev Anal Chem 10:25–44. https://doi.org/10.1146/annurev-anchem-061516-045414

    Article  CAS  Google Scholar 

  5. Sarni S, Biswas B, Liu S et al (2020) HIV-1 Gag protein with or without p6 specifically dimerizes on the viral RNA packaging signal. J Biol Chem 295:14391–14401. https://doi.org/10.1074/jbc.RA120.014835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Laganowsky A, Reading E, Allison TM et al (2014) Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510:172–175. https://doi.org/10.1038/nature13419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vimer S, Ben-Nissan G, Morgenstern D et al (2020) Comparative structural analysis of 20S proteasome ortholog protein complexes by native mass spectrometry. ACS Cent Sci 6:573–588. https://doi.org/10.1021/acscentsci.0c00080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Melani RD, Skinner OS, Fornelli L et al (2016) Mapping proteoforms and protein complexes from king cobra venom using both denaturing and native top-down proteomics. Mol Cell Proteomics 15:2423–2434. https://doi.org/10.1074/mcp.M115.056523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Franc V, Zhu J, Heck AJR (2018) Comprehensive proteoform characterization of plasma complement component C8αβγ by hybrid mass spectrometry approaches. J Am Soc Mass Spectrom 29:1099–1110. https://doi.org/10.1021/jasms.8b05825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schwartz BL, Bruce JE, Anderson GA et al (1995) Dissociation of tetrameric ions of noncovalent streptavidin complexes formed by electrospray ionization. J Am Soc Mass Spectrom 6:459–465. https://doi.org/10.1016/1044-0305(95)00191-F

    Article  CAS  PubMed  Google Scholar 

  11. Hall Z, Politis A, Bush MF et al (2012) Charge-state dependent compaction and dissociation of protein complexes: insights from ion mobility and molecular dynamics. J Am Chem Soc 134:3429–3438. https://doi.org/10.1021/ja2096859

    Article  CAS  PubMed  Google Scholar 

  12. Popa V, Trecroce DA, McAllister RG, Konermann L (2016) Collision-induced dissociation of electrosprayed protein complexes: an all-atom molecular dynamics model with mobile protons. J Phys Chem B 120:5114–5124. https://doi.org/10.1021/acs.jpcb.6b03035

    Article  CAS  PubMed  Google Scholar 

  13. Stiving AQ, VanAernum ZL, Busch F et al (2019) Surface-induced dissociation: an effective method for characterization of protein quaternary structure. Anal Chem 91:190–209. https://doi.org/10.1021/acs.analchem.8b05071

    Article  CAS  PubMed  Google Scholar 

  14. Harvey SR, Seffernick JT, Quintyn RS et al (2019) Relative interfacial cleavage energetics of protein complexes revealed by surface collisions. Proc Natl Acad Sci 116:8143–8148. https://doi.org/10.1073/pnas.1817632116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou M, Wysocki VH (2014) Surface induced dissociation: dissecting noncovalent protein complexes in the gas phase. Acc Chem Res 47:1010–1018. https://doi.org/10.1021/ar400223t

    Article  CAS  PubMed  Google Scholar 

  16. Quintyn RS, Yan J, Wysocki VH (2015) Surface-induced dissociation of homotetramers with D2 symmetry yields their assembly pathways and characterizes the effect of ligand binding. Chem Biol 22:583–592. https://doi.org/10.1016/j.chembiol.2015.03.019

    Article  CAS  PubMed  Google Scholar 

  17. Harvey SR, VanAernum ZL, Wysocki VH (2021) Surface-induced dissociation of anionic vs cationic native-like protein complexes. J Am Chem Soc 143:7698–7706. https://doi.org/10.1021/jacs.1c00855

    Article  CAS  PubMed  Google Scholar 

  18. VanAernum ZL, Gilbert JD, Belov ME et al (2019) Surface-induced dissociation of noncovalent protein complexes in an extended mass range orbitrap mass spectrometer. Anal Chem 91:3611–3618. https://doi.org/10.1021/acs.analchem.8b05605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. VanAernum ZL (2020) Novel native mass spectrometry-based fragmentation and separation approaches for the interrogation of protein complexes. Electronic Thesis or Dissertation, The Ohio State University

    Google Scholar 

  20. Cooks RG, Terwilliger DT, Ast T et al (1975) Surface modified mass spectrometry. J Am Chem Soc 97:1583–1585. https://doi.org/10.1021/ja00839a056

  21. Beck RD, John PS, Homer ML, Whetten RL (1991) Impact-induced cleaving and melting of alkali-halide nanocrystals. Science 253:879–883. https://doi.org/10.1126/science.253.5022.879

    Article  CAS  PubMed  Google Scholar 

  22. Laskin J, Futrell JH (2003) Surface-induced dissociation of peptide ions: kinetics and dynamics. J Am Soc Mass Spectrom 14:1340–1347. https://doi.org/10.1016/j.jasms.2003.08.004

    Article  CAS  PubMed  Google Scholar 

  23. Stone E, Gillig KJ, Ruotolo B et al (2001) Surface-induced dissociation on a MALDI-ion mobility-orthogonal time-of-flight mass spectrometer: sequencing peptides from an “in-solution” protein digest. Anal Chem 73:2233–2238. https://doi.org/10.1021/ac001430a

    Article  CAS  PubMed  Google Scholar 

  24. Schultz DG, Hanley L (1998) Shattering of SiMe3+ during surface-induced dissociation. J Chem Phys 109:10976–10983. https://doi.org/10.1063/1.477737

    Article  CAS  Google Scholar 

  25. Volný M, Elam WT, Ratner BD, Tureček F (2005) Preparative soft and reactive landing of gas-phase ions on plasma-treated metal surfaces. Anal Chem 77:4846–4853. https://doi.org/10.1021/ac0505019

    Article  CAS  PubMed  Google Scholar 

  26. Mohammed S, Chalmers MJ, Gielbert J et al (2001) A novel tandem quadrupole mass spectrometer allowing gaseous collisional activation and surface induced dissociation. J Mass Spectrom 36:1260–1268. https://doi.org/10.1002/jms.217

    Article  CAS  PubMed  Google Scholar 

  27. Castoro JA, Nuwaysir LM, Ijames CF, Wilkins CL (1992) Comparative study of photodissociation and surface-induced dissociation by laser desorption Fourier transform mass spectrometry. Anal Chem 64:2238–2243. https://doi.org/10.1021/ac00043a010

    Article  CAS  PubMed  Google Scholar 

  28. Galhena AS, Dagan S, Jones CM et al (2008) Surface-induced dissociation of peptides and protein complexes in a quadrupole/time-of-flight mass spectrometer. Anal Chem 80:1425–1436. https://doi.org/10.1021/ac701782q

    Article  CAS  PubMed  Google Scholar 

  29. Jones CM, Beardsley RL, Galhena AS et al (2006) Symmetrical gas-phase dissociation of noncovalent protein complexes via surface collisions. J Am Chem Soc 128:15044–15045. https://doi.org/10.1021/ja064586m

    Article  CAS  PubMed  Google Scholar 

  30. Zhou M, Huang C, Wysocki VH (2012) Surface-induced dissociation of ion mobility-separated noncovalent complexes in a quadrupole/time-of-flight mass spectrometer. Anal Chem 84:6016–6023. https://doi.org/10.1021/ac300810u

    Article  CAS  PubMed  Google Scholar 

  31. Yan J, Zhou M, Gilbert JD et al (2017) Surface-induced dissociation of protein complexes in a hybrid Fourier transform ion cyclotron resonance mass spectrometer. Anal Chem 89:895–901. https://doi.org/10.1021/acs.analchem.6b03986

    Article  CAS  PubMed  Google Scholar 

  32. Snyder DT, Panczyk E, Stiving AQ et al (2019) Design and performance of a second-generation surface-induced dissociation cell for Fourier transform ion cyclotron resonance mass spectrometry of native protein complexes. Anal Chem 91:14049–14057. https://doi.org/10.1021/acs.analchem.9b03746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Snyder DT, Panczyk EM, Somogyi A et al (2020) Simple and minimally invasive SID devices for native mass spectrometry. Anal Chem 92:11195–11203. https://doi.org/10.1021/acs.analchem.0c01657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Harvey SR, VanAernum ZL, Kostelic MM et al (2020) Probing the structure of nanodiscs using surface-induced dissociation mass spectrometry. Chem Commun. https://doi.org/10.1039/D0CC05531J

  35. Zhou M, Dagan S, Wysocki VH (2012) Protein subunits released by surface collisions of noncovalent complexes: nativelike compact structures revealed by ion mobility mass spectrometry. Angew Chem Int Ed 51:4336–4339. https://doi.org/10.1002/anie.201108700

    Article  CAS  Google Scholar 

  36. Quintyn RS, Harvey SR, Wysocki VH (2015) Illustration of SID-IM-SID (surface-induced dissociation-ion mobility-SID) mass spectrometry: homo and hetero model protein complexes. Analyst 140:7012–7019. https://doi.org/10.1039/c5an01095k

  37. Hernández H, Robinson CV (2007) Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat Protoc 2:715–726. https://doi.org/10.1038/nprot.2007.73

    Article  CAS  PubMed  Google Scholar 

  38. Dyachenko A, Gruber R, Shimon L et al (2013) Allosteric mechanisms can be distinguished using structural mass spectrometry. Proc Natl Acad Sci 110:7235–7239. https://doi.org/10.1073/pnas.1302395110

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ma X, Lai LB, Lai SM et al (2014) Uncovering the stoichiometry of Pyrococcus furiosus RNase P, a multi-subunit catalytic ribonucleoprotein complex, by surface-induced dissociation and ion mobility mass spectrometry. Angew Chem Int Ed 53:11483–11487. https://doi.org/10.1002/anie.201405362

    Article  CAS  Google Scholar 

  40. Lorenzen K, van Duijn E (2010) Native mass spectrometry as a tool in structural biology. Curr Protoc Protein Sci 62:17.12.1–17.12.17. https://doi.org/10.1002/0471140864.ps1712s62

    Article  Google Scholar 

  41. VanAernum ZL (2020) Rapid online buffer exchange for screening of proteins, protein complexes and cell lysates by native mass spectrometry. Nat Protoc 15:28

    Article  Google Scholar 

  42. Busch F, VanAernum ZL, Lai SM et al (2021) Analysis of tagged proteins using tandem affinity-buffer exchange chromatography online with native mass spectrometry. Biochemistry 60:1876–1884. https://doi.org/10.1021/acs.biochem.1c00138

    Article  CAS  PubMed  Google Scholar 

  43. Gan J, Ben-Nissan G, Arkind G et al (2017) Native mass spectrometry of recombinant proteins from crude cell lysates. Anal Chem 89:4398–4404. https://doi.org/10.1021/acs.analchem.7b00398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vimer S, Ben-Nissan G, Sharon M (2020) Direct characterization of overproduced proteins by native mass spectrometry. Nat Protoc 15:236–265. https://doi.org/10.1038/s41596-019-0233-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ben-Nissan G, Vimer S, Warszawski S et al (2018) Rapid characterization of secreted recombinant proteins by native mass spectrometry. Commun Biol 1:1–12. https://doi.org/10.1038/s42003-018-0231-3

    Article  Google Scholar 

  46. Xia Z, Williams ER (2018) Protein-glass surface interactions and ion desalting in electrospray ionization with submicron emitters. J Am Soc Mass Spectrom 29:194–202. https://doi.org/10.1021/jasms.8b05670

    Article  CAS  PubMed  Google Scholar 

  47. Susa AC, Lippens JL, Xia Z et al (2018) Submicrometer emitter ESI tips for native mass spectrometry of membrane proteins in ionic and nonionic detergents. J Am Soc Mass Spectrom 29:203–206. https://doi.org/10.1021/jasms.8b05656

    Article  CAS  PubMed  Google Scholar 

  48. Kirshenbaum N, Michaelevski I, Sharon M (2010) Analyzing large protein complexes by structural mass spectrometry. J Vis Exp:e1954. https://doi.org/10.3791/1954

  49. Fernandez de la Mora J (2000) Electrospray ionization of large multiply charged species proceeds via Dole’s charged residue mechanism. Anal Chim Acta 406:93–104. https://doi.org/10.1016/S0003-2670(99)00601-7

    Article  CAS  Google Scholar 

  50. Fort KL, van de Waterbeemd M, Boll D et al (2018) Expanding the structural analysis capabilities on an Orbitrap-based mass spectrometer for large macromolecular complexes. Analyst 143:100–105. https://doi.org/10.1039/C7AN01629H

    Article  CAS  Google Scholar 

  51. Rose RJ, Damoc E, Denisov E et al (2012) High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat Methods 9:1084–1086. https://doi.org/10.1038/nmeth.2208

    Article  CAS  PubMed  Google Scholar 

  52. Makarov A, Denisov E (2009) Dynamics of ions of intact proteins in the Orbitrap mass analyzer. J Am Soc Mass Spectrom 20:1486–1495. https://doi.org/10.1016/j.jasms.2009.03.024

    Article  CAS  PubMed  Google Scholar 

  53. Benesch JLP, Aquilina JA, Ruotolo BT et al (2006) Tandem mass spectrometry reveals the quaternary organization of macromolecular assemblies. Chem Biol 13:597–605. https://doi.org/10.1016/j.chembiol.2006.04.006

    Article  CAS  PubMed  Google Scholar 

  54. Zhou M, Dagan S, Wysocki VH (2013) Impact of charge state on gas-phase behaviors of noncovalent protein complexes in collision induced dissociation and surface induced dissociation. Analyst 138:1353–1362. https://doi.org/10.1039/C2AN36525A

    Article  CAS  PubMed  Google Scholar 

  55. Pagel K, Hyung S-J, Ruotolo BT, Robinson CV (2010) Alternate dissociation pathways identified in charge-reduced protein complex ions. Anal Chem 82:5363–5372. https://doi.org/10.1021/ac101121r

    Article  CAS  PubMed  Google Scholar 

  56. Harvey S, VanAernum Z, Wysocki V (2021) Surface-induced dissociation of anionic vs cationic native-like protein complexes. https://doi.org/10.26434/chemrxiv.13547837.v1

  57. Beardsley RL, Jones CM, Galhena AS, Wysocki VH (2009) Noncovalent protein tetramers and pentamers with “ n ” charges yield monomers with n /4 and n /5 charges. Anal Chem 81:1347–1356. https://doi.org/10.1021/ac801883k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kostelic M, Marty M (2020) Deconvolving native and intact protein mass spectra with UniDec. https://doi.org/10.26434/chemrxiv.13417118.v1

  59. Marty MT, Baldwin AJ, Marklund EG et al (2015) Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal Chem 87:4370–4376. https://doi.org/10.1021/acs.analchem.5b00140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Reid DJ, Diesing JM, Miller MA et al (2019) MetaUniDec: high-throughput deconvolution of native mass spectra. J Am Soc Mass Spectrom 30:118–127. https://doi.org/10.1007/s13361-018-1951-9

    Article  CAS  PubMed  Google Scholar 

  61. Bern M, Caval T, Kil YJ et al (2018) Parsimonious charge deconvolution for native mass spectrometry. J Proteome Res 17:1216–1226. https://doi.org/10.1021/acs.jproteome.7b00839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Quintyn RS, Zhou M, Yan J, Wysocki VH (2015) Surface-induced dissociation mass spectra as a tool for distinguishing different structural forms of gas-phase multimeric protein complexes. Anal Chem 87:11879–11886. https://doi.org/10.1021/acs.analchem.5b03441

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the current and former Wysocki group members who have contributed to the development and understanding of SID. In particular, we would like to acknowledge Zachary VanAernum and Joshua Gilbert for their hard work incorporating SID into the Exactive platforms and optimizing tuning and Benjamin Jones for helpful discussions during the preparation of this protocol. We would like to acknowledge NSF Grants DBI1455654 and DBI0923551 for SID instrument development. We also acknowledge NIH Grant P41GM128577 for the development of an integrated MS-based structural biology workflow and dissemination of SID .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicki H. Wysocki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Harvey, S.R., Ben-Nissan, G., Sharon, M., Wysocki, V.H. (2022). Surface-Induced Dissociation for Protein Complex Characterization. In: Sun, L., Liu, X. (eds) Proteoform Identification. Methods in Molecular Biology, vol 2500. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2325-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2325-1_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2324-4

  • Online ISBN: 978-1-0716-2325-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics