Skip to main content

Bioassaying the Function of Pheromones in Drosophila melanogaster’s Social Behavior

  • Protocol
  • First Online:
Behavioral Neurogenetics

Abstract

Social interactions are generally regulated by pheromones that convey information about the identity, physiological state, and location of an individual. The fruit fly, Drosophila melanogaster , offers a powerful model system to study the mechanisms through which pheromones modulate social interactions. Most of the fruit fly’s social behavior is demonstrably modulated by pheromones, and many of the chemical compounds composing its pheromonal profile have been characterized. This chapter describes several behavioral bioassays that can be used to determine the function of contact and short-range volatile pheromones in D. melanogaster’s social behavior. The chapter first provides instructions on how to rear flies for pheromonal experimentation and how to generate flies that cannot produce cuticular hydrocarbons. Afterward, protocols on how to determine the function of pheromones in courtship behavior and mate choice are provided, followed by protocols to determine whether pheromones function as volatile or contact cues during oviposition site selection. Finally, the last section of the chapter gives general advice on how to work with pheromones in the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Billeter JC, Wolfner MF (2018) Chemical cues that guide female reproduction in Drosophila melanogaster. J Chem Ecol 44:750–769. https://doi.org/10.1007/s10886-018-0947-z

  2. Wyatt TD (2014) Pheromones and animal behavior: chemical signals and signatures. Cambridge University Press

    Google Scholar 

  3. Brennan PA, Zufall F (2006) Pheromonal communication in vertebrate. Nature:308–315. https://doi.org/10.1038/nature0540

  4. Kohl J, Huoviala P, Jefferis GSXE (2015) Pheromone processing in Drosophila. Curr Opin Neurobiol 34:149–157. https://doi.org/10.1016/j.conb.2015.06.009

  5. Li Y, Dulac C (2018) Neural coding of sex-specific social information in the mouse brain. Curr Opin Neurobiol 53:120–130. https://doi.org/10.1016/j.conb.2018.07.005

    Article  CAS  PubMed  Google Scholar 

  6. Cardé RT (2007) Using pheromones to disrupt mating of moth pests. In: Kogan M, Jepson P (eds) Perspectives in ecological theory and integrated pest management. Cambridge University Press, Cambridge, pp 122–169

    Chapter  Google Scholar 

  7. Reddy GVP, Guerrero A (2004) Interactions of insect pheromones and plant semiochemicals. Trends Plant Sci 9:253–261. https://doi.org/10.1016/j.tplants.2004.03.009

    Article  CAS  PubMed  Google Scholar 

  8. Cardé RT, Millar JG (2009) Pheromones. In: Resh V, Cardé RT (eds) Encyclopedia of insects. Academic Press, pp 766–772

    Chapter  Google Scholar 

  9. Wertheim B, van Baalen EJA, Dicke M, Vet LEM (2005) Pheromone-mediated aggregation in nonsocial arthropods: an evolutionary ecological perspective. Annu Rev Entomol 50:321–346. https://doi.org/10.1146/annurev.ento.49.061802.123329

    Article  CAS  PubMed  Google Scholar 

  10. Byers JA (1991) Pheromones and chemical ecology of locusts. Biol Rev 66:347–378. https://doi.org/10.1111/j.1469-185x.1991.tb01146.x

    Article  Google Scholar 

  11. Srinivasan J, Kaplan F, Ajredini R et al (2008) A blend of small molecules regulates both mating and development in Caenorhabditis elegans. Nature 454:1115–1118. https://doi.org/10.1038/nature07168

  12. Liberles SD (2014) Mammalian pheromones. Annu Rev Physiol 76:151–175. https://doi.org/10.1146/annurev-physiol-021113-170334

    Article  CAS  PubMed  Google Scholar 

  13. Roberts SA, Simpson DM, Armstrong SD et al (2010) Darcin: a male pheromone that stimulates female memory and sexual attraction to an individual male’s odour. BMC Biol 8. https://doi.org/10.1186/1741-7007-8-75

  14. Jallon JM (1984) A few chemical words exchanged by Drosophila during courtship and mating. Behav Genet 14:441–478. https://doi.org/10.1007/BF01065444

    Article  CAS  PubMed  Google Scholar 

  15. Ferveur JF (2005) Cuticular hydrocarbons: their evolution and roles in Drosophila pheromonal communication. Behav Genet 35:279. https://doi.org/10.1007/s10519-005-3220-5

    Article  PubMed  Google Scholar 

  16. Sato K, Yamamoto D (2020) Contact-chemosensory evolution underlying reproductive isolation in Drosophila species. Front Behav Neurosci 14:1–13. https://doi.org/10.3389/fnbeh.2020.597428

  17. Billeter JC, Levine JD (2014) Neurogenetics: sex and the female brain. Curr Biol 24:R812–R814. https://doi.org/10.1016/j.cub.2014.07.052

    Article  CAS  PubMed  Google Scholar 

  18. Bartelt RJ, Schaner AM, Jackson LL (1985) cis-Vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster. J Chem Ecol 11:1747–1756. https://doi.org/10.1007/bf01012124

  19. Yew JY, Dreisewerd K, Luftmann H et al (2009) A new male sex pheromone and novel cuticular cues for chemical communication in Drosophila. Curr Biol 19:1245–1254. https://doi.org/10.1016/j.cub.2009.06.037

  20. Everaerts C, Farine JP, Cobb M, Ferveur JF (2010) Drosophila cuticular hydrocarbons revisited: mating status alters cuticular profiles. PLoS One 5:e9607. https://doi.org/10.1371/journal.pone.0009607

  21. Butterworth FM (1969) Lipids of Drosophila: a newly detected lipid in the male. Science 163:1356–1357. https://doi.org/10.1126/science.163.3873.1356

  22. Lin HH, Cao DS, Sethi S et al (2016) Hormonal modulation of pheromone detection enhances male courtship success. Neuron 90:1272–1285. https://doi.org/10.1016/j.neuron.2016.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dweck HHKM, Ebrahim SAM, Thoma M et al (2015) Pheromones mediating copulation and attraction in Drosophila. Proc Natl Acad Sci USA 112:E2829–E2835. https://doi.org/10.1073/pnas.1504527112

  24. Antony C, Davis TL, Carlson DA et al (1985) Compared behavioral responses of male Drosophila melanogaster (Canton S) to natural and synthetic aphrodisiacs. J Chem Ecol 11:1617–1629. https://doi.org/10.1007/BF01012116

  25. Lebreton S, Borrero-Echeverry F, Gonzalez F et al (2017) A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BMC Biol 15:88. https://doi.org/10.1186/s12915-017-0427-x

  26. Billeter JC, Atallah J, Krupp JJ et al (2009) Specialized cells tag sexual and species identity in Drosophila melanogaster. Nature 461:987–991. https://doi.org/10.1038/nature08495

  27. Guiraudie-Capraz G, Pho DB, Jallon JM (2007) Role of the ejaculatory bulb in biosynthesis of the male pheromone cis -vaccenyl acetate in Drosophila melanogaster. Integr Zool 2:89–99. https://doi.org/10.1111/j.1749-4877.2007.00047.x

  28. Ferveur JF, Savarit F, O’Kane CJ et al (1997) Genetic feminization of pheromones and its behavioral consequences in Drosophila males. Science 276:1555–1558. https://doi.org/10.1126/science.276.5318.1555

  29. Chertemps T, Duportets L, Labeur C et al (2007) A female-biased expressed elongase involved in long-chain hydrocarbon biosynthesis and courtship behavior in Drosophila melanogaster. Proc Natl Acad Sci USA 104:4273–4278. https://doi.org/10.1073/pnas.0608142104

  30. Savarit F, Sureau G, Cobb M, Ferveur JF (1999) Genetic elimination of known pheromones reveals the fundamental chemical bases of mating and isolation in Drosophila. Proc Natl Acad Sci USA 96:9015–9020. https://doi.org/10.1073/pnas.96.16.9015

  31. Lebreton S, Grabe V, Omondi AB et al (2014) Love makes smell blind: mating suppresses pheromone attraction in Drosophila females via Or65a olfactory neurons. Sci Rep 4:7199. https://doi.org/10.1038/srep07119

  32. Wertheim B, Dicke M, Vet LEM (2002) Behavioural plasticity in support of a benefit for aggregation pheromone use in Drosophila melanogaster. Entomol Exp Appl 103:61–71. https://doi.org/10.1046/j.1570-7458.2002.00954.x

  33. Miyamoto T, Amrein H (2008) Suppression of male courtship by a Drosophila pheromone receptor. Nat Neurosci 11:874–876. https://doi.org/10.1038/nn.2161

  34. Moon SJ, Lee Y, Jiao Y, Montell C (2009) A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship. Curr Biol 19:1623–1627. https://doi.org/10.1016/j.cub.2009.07.061

  35. Thistle R, Cameron P, Ghorayshi A et al (2012) Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship. Cell 149:1140–1151. https://doi.org/10.1016/j.cell.2012.03.045

  36. Wang L, Han X, Mehren J et al (2011) Hierarchical chemosensory regulation of male-male social interactions in Drosophila. Nat Neurosci 14:757–762. https://doi.org/10.1038/nn.2800

  37. Grillet M, Dartevelle L, Ferveur JF (2006) A Drosophila male pheromone affects female sexual receptivity. Proc R Soc B Biol Sci 273:315–323. https://doi.org/10.1098/rspb.2005.3332

  38. Farine JP, Ferveur JF, Everaerts C (2012) Volatile Drosophila cuticular pheromones are affected by social but not sexual experience. PLoS One 7:e40396. https://doi.org/10.1371/journal.pone.0040396

  39. Lin CC, Prokop-Prigge KA, Preti G, Potter CJ (2015) Food odors trigger Drosophila males to deposit a pheromone that guides aggregation and female oviposition decisions. eLife 4:e08688. https://doi.org/10.7554/eLife.08688

  40. Kurtovic A, Widmer A, Dickson BJ (2007) A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446:542–546. https://doi.org/10.1038/nature05672

  41. Wang L, Anderson DJ (2010) Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila. Nature 463:227–231. https://doi.org/10.1038/nature08678

    Article  CAS  PubMed  Google Scholar 

  42. Ha TS, Smith DP (2006) A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila. J Neurosci 26:8727–8733. https://doi.org/10.1523/JNEUROSCI.0876-06.2006

  43. van der Goes van Naters W, Carlson JR (2007) Receptors and neurons for fly odors in Drosophila. Curr Biol 17:606–612. https://doi.org/10.1016/j.cub.2007.02.043

  44. Seeholzer LF, Seppo M, Stern DL, Ruta V (2018) Evolution of a central neural circuit underlies Drosophila mate preferences. Nature 559:564–569. https://doi.org/10.1038/s41586-018-0322-9

  45. Auer TO, Khallaf MA, Silbering AF et al (2020) Olfactory receptor and circuit evolution promote host specialization. Nature. https://doi.org/10.1038/s41586-020-2073-7

  46. Montagne J, Wicker-Thomas C (2021) Drosophila pheromone production. In: Insect pheromone biochemistry and molecular biology. Elsevier, pp 163–181

    Google Scholar 

  47. Wicker-Thomas C, Chertemps T (2010) Molecular biology and genetics of hydrocarbon production. In: Insect hydrocarbons biology, biochemistry, and chemical ecology, pp 53–74. https://doi.org/10.1017/CBO9780511711909.005

    Chapter  Google Scholar 

  48. de la Paz Fernández M, Chan YB, Yew JY et al (2010) Pheromonal and behavioral cues trigger male-to-female aggression in Drosophila. PLoS Biol 8:e1000541. https://doi.org/10.1371/journal.pbio.1000541

  49. Kent C, Azanchi R, Smith B et al (2007) A model-based analysis of chemical and temporal patterns of cuticular hydrocarbons in male Drosophila melanogaster. PLoS One 2. https://doi.org/10.1371/journal.pone.0000962

  50. Marcillac F, Grosjean Y, Ferveur JF (2005) A single mutation alters production and discrimination of Drosophila sex pheromones. Proc R Soc B Biol Sci 272:303–309. https://doi.org/10.1098/rspb.2004.2971

  51. Billeter JC, Levine JD (2013) Who is he and what is he to you? Recognition in Drosophila melanogaster. Curr Opin Neurobiol 23:17–23. https://doi.org/10.1016/j.conb.2012.08.009

  52. Krupp JJ, Nayal K, Wong A et al (2020) Desiccation resistance is an adaptive life-history trait dependent upon cuticular hydrocarbons, and influenced by mating status and temperature in D. melanogaster. J Insect Physiol 121:103990. https://doi.org/10.1016/j.jinsphys.2019.103990

  53. Mossman JA, Mabeza RMS, Blake E et al (2019) Age of both parents influences reproduction and egg dumping behavior in Drosophila melanogaster. J Hered 110:300–309. https://doi.org/10.1093/jhered/esz009

  54. Arienti M, Antony C, Wicker-Thomas C et al (2010) Ontogeny of Drosophila melanogaster female sex-appeal and cuticular hydrocarbons. Integr Zool 5:272–282. https://doi.org/10.1111/j.1749-4877.2010.00213.x

  55. Scott D (1986) Sexual mimicry regulates the attractiveness of mated Drosophila melanogaster females. Proc Natl Acad Sci USA 83:8429–8433. https://doi.org/10.1073/pnas.83.21.8429

  56. Laturney M, Billeter JC (2016) Drosophila melanogaster females restore their attractiveness after mating by removing male anti-aphrodisiac pheromones. Nat Commun 7:12322. https://doi.org/10.1038/ncomms12322

  57. Lung O, Wolfner MF (2001) Identification and characterization of the major Drosophila melanogaster mating plug protein. Insect Biochem Mol Biol 31:543–551. https://doi.org/10.1016/S0965-1748(00)00154-5

  58. Badre NH, Martin ME, Cooper RL (2005) The physiological and behavioral effects of carbon dioxide on Drosophila melanogaster larvae. Comp Biochem Physiol Mol Integr Physiol 140:363–376. https://doi.org/10.1016/j.cbpb.2005.01.019

  59. Bartholomew NR, Burdett JM, Vandenbrooks JM, et al (2015) Impaired climbing and flight behaviour in Drosophila melanogaster following carbon dioxide anaesthesia. Sci Rep 5:1–10. https://doi.org/https://doi.org/10.1038/srep15298

  60. McGuire SE, Le PT, Osborn AJ et al (2003) Spatiotemporal Rescue of Memory Dysfunction in Drosophila. Science 302:1765–1768. https://doi.org/10.1126/science.1089035

  61. Duménil C, Woud D, Pinto F et al (2016) Pheromonal cues deposited by mated females convey social information about egg-laying sites in Drosophila Melanogaster. J Chem Ecol 42:259–269. https://doi.org/10.1007/s10886-016-0681-3

  62. Keesey IW, Koerte S, Retzke T et al (2016) Adult frass provides a pheromone signature for Drosophila feeding and aggregation. J Chem Ecol 42:739–747. https://doi.org/10.1007/s10886-016-0737-4

  63. Mercier D, Tsuchimoto Y, Ohta K, Kazama H (2018) Olfactory landmark-based communication in interacting Drosophila. Curr Biol 28:2624–2631.e5. https://doi.org/10.1016/j.cub.2018.06.005

  64. Billeter JC, Rideout EJ, Dornan AJ, Goodwin SF (2006) Control of male sexual behavior in Drosophila by the sex determination pathway. Curr Biol 16:R766–R776. https://doi.org/10.1016/j.cub.2006.08.025

  65. Kohlmeier P, Zhang Y, Gorter JA et al (2021) Mating increases Drosophila melanogaster females’ choosiness by reducing olfactory sensitivity to a male pheromone. Nat Ecol Evol 5:1165–1173. https://doi.org/10.1038/s41559-021-01482-4

  66. Schwartz NU, Zhong L, Bellemer A, Tracey WD (2012) Egg laying decisions in Drosophila are consistent with foraging costs of larval progeny. PLoS One 7:e37910. https://doi.org/10.1371/journal.pone.0037910

  67. Yang CH, Belawat P, Hafen E et al (2008) Drosophila egg-laying site selection as a system to study simple decision-making processes. Science 319:1679–1683. https://doi.org/10.1126/science.1151842

  68. Zhu EY, Guntur AR, He R et al (2014) Egg-laying demand induces aversion of UV light in Drosophila females. Curr Biol 24:2797–2804. https://doi.org/10.1016/j.cub.2014.09.076

  69. Yang CH, He R, Stern U (2015) Behavioral and circuit basis of sucrose rejection by Drosophila females in a simple decision-making task. J Neurosci 35:1396–1410. https://doi.org/10.1523/jneurosci.0992-14.2015

  70. Nojima T, Rings A, Allen AM et al (2021) A sex-specific switch between visual and olfactory inputs underlies adaptive sex differences in behavior. Curr Biol 31:1175–1191.e6. https://doi.org/10.1016/j.cub.2020.12.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Karageorgi M, Bräcker LB, Lebreton S et al (2017) Evolution of multiple sensory systems drives novel egg-laying behavior in the fruit pest Drosophila suzukii. Curr Biol 27:847–853. https://doi.org/10.1016/j.cub.2017.01.055

  72. Bloch Qazi MC, Heifetz Y, Wolfner MF (2003) The developments between gametogenesis and fertilization: ovulation and female sperm storage in Drosophila melanogaster. Dev Biol 256:195–211. https://doi.org/10.1016/S0012-1606(02)00125-2

  73. Rubinstein CD, Wolfner MF (2013) Drosophila seminal protein ovulin mediates ovulation through female octopamine neuronal signaling. Proc Natl Acad Sci USA 110:17420–17425. https://doi.org/10.1073/pnas.1220018110

  74. Schorkopf DLP, Molnár BP, Solum M et al (2019) False positives from impurities result in incorrect functional characterization of receptors in chemosensory studies. Prog Neurobiol 181:101661. https://doi.org/10.1016/j.pneurobio.2019.101661

    Article  CAS  PubMed  Google Scholar 

  75. Laturney M, Billeter JC (2014) Neurogenetics of female reproductive behaviors in Drosophila melanogaster. In: Friedmann T, Dunlap JC, Goodwin SF (eds) Advances in genetics. Academic Press, San Diego, pp 1–108

    Google Scholar 

  76. Verschut TA, Carlsson MA, Anderson P, Hambäck PA (2017) Sensory mutations in Drosophila melanogaster influence associational effects between resources during oviposition. Sci Rep 7:9352. https://doi.org/10.1038/s41598-017-09728-7

  77. Cury KM, Prudhomme B, Gompel N (2019) A short guide to insect oviposition: when, where and how to lay an egg. J Neurogenet 33:75–89. https://doi.org/10.1080/01677063.2019.1586898

    Article  CAS  PubMed  Google Scholar 

  78. Lu B, LaMora A, Sun Y et al (2012) ppk23-dependent chemosensory functions contribute to courtship behavior in Drosophila melanogaster. PLoS Genet 8:e1002587. https://doi.org/10.1371/journal.pgen.1002587

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Christophe Billeter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Verschut, T.A., Kohlmeier, P., Billeter, JC. (2022). Bioassaying the Function of Pheromones in Drosophila melanogaster’s Social Behavior. In: Yamamoto, D. (eds) Behavioral Neurogenetics. Neuromethods, vol 181. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2321-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2321-3_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2320-6

  • Online ISBN: 978-1-0716-2321-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics