Skip to main content

Measurement of Thermoregulatory Behavior in Drosophila melanogaster

  • Protocol
  • First Online:
Behavioral Neurogenetics

Part of the book series: Neuromethods ((NM,volume 181))

  • 527 Accesses

Abstract

Thermoregulation is a fundamental physiological function that maintains homeostasis in both endothermic and ectothermic animals. As a model organism, the fruit fly (Drosophila melanogaster) has markedly contributed to the study of behavioral genetics. Behavioral analyses using Drosophila have revealed the sensory neurons, sensor molecules, and other factors including energy metabolism that are closely linked to thermoregulation. In this chapter, we describe the equipment and procedures required for analyzing thermoregulatory behavior in Drosophila. We also provide guidelines for the selection of strategies to analyze behavioral thermoregulation in Drosophila. In addition, we provide representative results obtained with these protocols and show that changes in preferred temperature can be induced by altering the unsaturation of membrane phospholipids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morrison SF, Nakamura K (2011) Central neural pathways for thermoregulation. Front Biosci (Landmark Ed) 16:74–104

    Article  CAS  Google Scholar 

  2. Reiter LT, Potocki L, Chien S, Gribskov M, Bier E (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 11(6):1114–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Benzer S (1967) BEHAVIORAL MUTANTS OF drosophila ISOLATED BY COUNTERCURRENT DISTRIBUTION. Proc Natl Acad Sci U S A 58(3):1112–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sokolowski MB (2001) Drosophila: genetics meets behaviour. Nat Rev Genet 2(11):879–890

    Article  CAS  PubMed  Google Scholar 

  5. Link N, Bellen HJ (2020) Using drosophila to drive the diagnosis and understand the mechanisms of rare human diseases. Development 147(21). https://doi.org/10.1242/dev.191411

  6. Sayeed O, Benzer S (1996) Behavioral genetics of thermosensation and hygrosensation in drosophila. Proc Natl Acad Sci U S A 93(12):6079–6084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tominaga M (2006) The role of TRP channels in Thermosensation. In: Liedtke WB, Heller S (eds) TRP Ion Channel function in sensory transduction and cellular Signaling cascades. Frontiers in Neuroscience. Taylor & Francis Group, LLC, Boca Raton, p 271

    Chapter  Google Scholar 

  8. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rosenzweig M, Brennan KM, Tayler TD, Phelps PO, Patapoutian A, Garrity PA (2005) The drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Dev 19(4):419–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Viswanath V, Story GM, Peier AM, Petrus MJ, Lee VM, Hwang SW, Patapoutian A, Jegla T (2003) Opposite thermosensor in fruitfly and mouse. Nature 423(6942):822–823

    Article  CAS  PubMed  Google Scholar 

  11. Hamada FN, Rosenzweig M, Kang K, Pulver SR, Ghezzi A, Jegla TJ, Garrity PA (2008) An internal thermal sensor controlling temperature preference in drosophila. Nature 454(7201):217–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kwon Y, Shim HS, Wang X, Montell C (2008) Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade. Nat Neurosci 11(8):871–873

    Article  CAS  PubMed  Google Scholar 

  13. Luo J, Shen WL, Montell C (2017) TRPA1 mediates sensation of the rate of temperature change in drosophila larvae. Nat Neurosci 20(1):34–41

    Article  CAS  PubMed  Google Scholar 

  14. Saito S, Nakatsuka K, Takahashi K, Fukuta N, Imagawa T, Ohta T, Tominaga M (2012) Analysis of transient receptor potential ankyrin 1 (TRPA1) in frogs and lizards illuminates both nociceptive heat and chemical sensitivities and coexpression with TRP vanilloid 1 (TRPV1) in ancestral vertebrates. J Biol Chem 287(36):30743–30754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kurganov E, Zhou Y, Saito S, Tominaga M (2014) Heat and AITC activate green anole TRPA1 in a membrane-delimited manner. Pflugers Arch 466(10):1873–1884

    Article  CAS  PubMed  Google Scholar 

  16. Gracheva EO, Ingolia NT, Kelly YM, Cordero-Morales JF, Hollopeter G, Chesler AT, Sanchez EE, Perez JC, Weissman JS, Julius D (2010) Molecular basis of infrared detection by snakes. Nature 464(7291):1006–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saito S, Banzawa N, Fukuta N, Saito CT, Takahashi K, Imagawa T, Ohta T, Tominaga M (2014) Heat and noxious chemical sensor, chicken TRPA1, as a target of bird repellents and identification of its structural determinants by multispecies functional comparison. Mol Biol Evol 31(3):708–722

    Article  CAS  PubMed  Google Scholar 

  18. Zhong L, Bellemer A, Yan H, Ken H, Jessica R, Hwang RY, Pitt GS, Tracey WD (2012) Thermosensory and nonthermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat-sensor domains of a thermoTRP channel. Cell Rep 1(1):43–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gu P, Gong J, Shang Y, Wang F, Ruppell KT, Ma Z, Sheehan AE, Freeman MR, Xiang Y (2019) Polymodal nociception in drosophila requires alternative splicing of TrpA1. Curr Biol 29(23):3961–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tracey WD Jr, Wilson RI, Laurent G, Benzer S (2003) Painless, a drosophila gene essential for nociception. Cell 113(2):261–273

    Article  CAS  PubMed  Google Scholar 

  21. Sokabe T, Tsujiuchi S, Kadowaki T, Tominaga M (2008) Drosophila painless is a Ca2+−requiring channel activated by noxious heat. J Neurosci 28(40):9929–9938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee Y, Lee Y, Lee J, Bang S, Hyun S, Kang J, Hong ST, Bae E, Kaang BK, Kim J (2005) Pyrexia is a new thermal transient receptor potential channel endowing tolerance to high temperatures in Drosophila melanogaster. Nat Genet 37(3):305–310

    Article  CAS  PubMed  Google Scholar 

  23. Rosenzweig M, Kang K, Garrity PA (2008) Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster. Proc Natl Acad Sci U S A 105(38):14668–14673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kwon Y, Shen WL, Shim HS, Montell C (2010) Fine thermotactic discrimination between the optimal and slightly cooler temperatures via a TRPV channel in chordotonal neurons. J Neurosci 30(31):10465–10471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gallio M, Ofstad TA, Macpherson LJ, Wang JW, Zuker CS (2011) The coding of temperature in the drosophila brain. Cell 144(4):614–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Turner HN, Armengol K, Patel AA, Himmel NJ, Sullivan L, Iyer SC, Bhattacharya S, Iyer EPR, Landry C, Galko MJ, Cox DN (2016) The TRP channels Pkd2, NompC, and Trpm act in cold-sensing neurons to mediate unique aversive Behaviors to noxious cold in drosophila. Curr Biol 26(23):3116–3128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ni L, Bronk P, Chang EC, Lowell AM, Flam JO, Panzano VC, Theobald DL, Griffith LC, Garrity PA (2013) A gustatory receptor paralogue controls rapid warmth avoidance in drosophila. Nature 500(7464):580–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ni L, Klein M, Svec KV, Budelli G, Chang EC, Ferrer AJ, Benton R, Samuel AD, Garrity PA (2016) The ionotropic receptors IR21a and IR25a mediate cool sensing in drosophila. elife 5. https://doi.org/10.7554/eLife.13254

  29. Budelli G, Ni L, Berciu C, van Giesen L, Knecht ZA, Chang EC, Kaminski B, Silbering AF, Samuel A, Klein M, Benton R, Nicastro D, Garrity PA (2019) Ionotropic receptors specify the morphogenesis of phasic sensors controlling rapid thermal preference in drosophila. Neuron 101(4):738–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Takeuchi K, Nakano Y, Kato U, Kaneda M, Aizu M, Awano W, Yonemura S, Kiyonaka S, Mori Y, Yamamoto D, Umeda M (2009) Changes in temperature preferences and energy homeostasis in dystroglycan mutants. Science 323(5922):1740–1743

    Article  CAS  PubMed  Google Scholar 

  31. Sokabe T, Chen HC, Luo J, Montell C (2016) A switch in thermal preference in drosophila larvae depends on multiple Rhodopsins. Cell Rep 17(2):336–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  PubMed  Google Scholar 

  33. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

    Google Scholar 

  34. Harayama T, Riezman H (2018) Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol 19(5):281–296

    Article  CAS  PubMed  Google Scholar 

  35. Brand AH, Perrimon N (1993) Targeted gene-expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415

    Article  CAS  PubMed  Google Scholar 

  36. Suito T, Nagao K, Takeuchi K, Juni N, Hara Y, Umeda M (2020) Functional expression of Delta12 fatty acid desaturase modulates thermoregulatory behaviour in drosophila. Sci Rep 10. https://doi.org/10.1038/s41598-020-68601-2

  37. Nagao K, Murakami A, Umeda M (2019) Structure and function of Delta9-fatty acid desaturase. Chem Pharm Bull (Tokyo) 67(4):327–332

    Article  CAS  Google Scholar 

  38. Klein M, Afonso B, Vonner AJ, Hernandez-Nunez L, Berck M, Tabone CJ, Kane EA, Pieribone VA, Nitabach MN, Cardona A, Zlatic M, Sprecher SG, Gershow M, Garrity PA, Samuel AD (2015) Sensory determinants of behavioral dynamics in drosophila thermotaxis. Proc Natl Acad Sci U S A 112(2):E220–E229

    Article  CAS  PubMed  Google Scholar 

  39. Yamaguchi S, Desplan C, Heisenberg M (2010) Contribution of photoreceptor subtypes to spectral wavelength preference in drosophila. Proc Natl Acad Sci U S A 107(12):5634–5639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Branson K, Robie AA, Bender J, Perona P, Dickinson MH (2009) High-throughput ethomics in large groups of drosophila. Nat Methods 6(6):451–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Romero-Ferrero F, Bergomi MG, Hinz RC, Heras FJH, de Polavieja GG (2019) Idtracker.Ai: tracking all individuals in small or large collectives of unmarked animals. Nat Methods 16(2):179–182

    Article  CAS  PubMed  Google Scholar 

  42. Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW, Bethge M (2018) DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat Neurosci 21(9):1281–1289

    Article  CAS  PubMed  Google Scholar 

  43. Frank DD, Jouandet GC, Kearney PJ, Macpherson LJ, Gallio M (2015) Temperature representation in the drosophila brain. Nature 519(7543):358–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu WW, Mazor O, Wilson RI (2015) Thermosensory processing in the drosophila brain. Nature 519(7543):353–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alpert MH, Frank DD, Kaspi E, Flourakis M, Zaharieva EE, Allada R, Para A, Gallio M (2020) A circuit encoding absolute cold temperature in drosophila. Curr Biol 30(12):2275–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marin EC, Buld L, Theiss M, Sarkissian T, Roberts RJV, Turnbull R, Tamimi IFM, Pleijzier MW, Laursen WJ, Drummond N, Schlegel P, Bates AS, Li F, Landgraf M, Costa M, Bock DD, Garrity PA, Jefferis G (2020) Connectomics analysis reveals first-, second-, and third-order Thermosensory and Hygrosensory neurons in the adult drosophila brain. Curr Biol 30(16):3167–3182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Umezaki Y, Hayley SE, Chu ML, Seo HW, Shah P, Hamada FN (2018) Feeding-state-dependent modulation of temperature preference requires insulin Signaling in drosophila warm-sensing neurons. Curr Biol 28(5):779–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Makoto Tominaga (National Institute for Physiological Science) for helpful discussion. We thank Toshiyuki Sazi (National Institute for Physiological Science) for creating the acrylic box for video recording. This work was supported by a Grant-in-aid for Scientific research 15H05930 (to M. U.), 15 K21744 (to M. U.), 20 K21388 (to M. U.), 21H02477 (to M. U.), 18 K05433 (to K.N), 21 K05391 (to K. N.), 21H02531 (to T. Sok.), 19 K23790 (for T. Sui.), and 21 K15192 (for T. Sui.) from the Japan Society for the Promotion of Science and the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takuto Suito or Kohjiro Nagao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Suito, T., Nagao, K., Kai, M., Juni, N., Sokabe, T., Umeda, M. (2022). Measurement of Thermoregulatory Behavior in Drosophila melanogaster. In: Yamamoto, D. (eds) Behavioral Neurogenetics. Neuromethods, vol 181. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2321-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2321-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2320-6

  • Online ISBN: 978-1-0716-2321-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics