Skip to main content

Measuring Sleep in Drosophila

  • Protocol
  • First Online:
Behavioral Neurogenetics

Part of the book series: Neuromethods ((NM,volume 181))

Abstract

In this chapter, we introduce the method by which we measure and quantify sleep in Drosophila melanogaster . Drosophila is a powerful genetic model system that has been instrumental in contributing to our understanding of numerous biological processes including development, immunity, the circadian clock, and, more recently, sleep at the molecular and mechanistic level. The past two decades of sleep research has provided enormous advances in our understanding of circuit and molecular mechanisms that underlie sleep. Indeed, this simpler genetic model has allowed us to unravel the complexity of sleep and improve understanding of its biological function and impact on many aspects of physiology across the life span. Here we describe a straightforward, high-throughput method that is most commonly used for measuring sleep in Drosophila .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abhilash L, Sheeba V (2019) RhythmicAlly: your R and shiny–based open-source ally for the analysis of biological rhythms. J Biol Rhythm 34:551–561

    Article  Google Scholar 

  2. Afonso DJS, Liu D, Machado DR, Pan H, Jepson JEC, Rogulja D, Koh K (2015) TARANIS functions with cyclin a and Cdk1 in a novel arousal center to control sleep in drosophila. Curr Biol 25:1717–1726. https://doi.org/10.1016/j.cub.2015.05.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. van Alphen B, Semenza ER, Yap M, van Swinderen B, Allada R (2021) A deep sleep stage in Drosophila with a functional role in waste clearance. Sci Adv 7:2999. https://doi.org/10.1126/sciadv.abc2999

    Article  CAS  Google Scholar 

  4. Catterson JH, Knowles-Barley S, James K, Heck MMS, Harmar AJ, Hartley PS (2010) Dietary modulation of Drosophila sleep-wake behaviour. PLoS One 5:e12062. https://doi.org/10.1371/journal.pone.0012062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cavanaugh DJ, Geratowski JD, Wooltorton JRA, Spaethling JM, Hector CE, Zheng X, Johnson EC, Eberwine JH, Sehgal A (2014) Identification of a circadian output circuit for rest: activity rhythms in Drosophila. Cell 157:689–701. https://doi.org/10.1016/j.cell.2014.02.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chiu JC, Low KH, Pike DH, Yildirim E, Edery I (2010) Assaying locomotor activity to study circadian rhythms and sleep parameters in Drosophila. J Vis Exp:2157. https://doi.org/10.3791/2157

  7. Cichewicz K, Hirsh J (2018) ShinyR-DAM: a program analyzing drosophila activity, sleep and circadian rhythms. Commun Biol 1:25. https://doi.org/10.1038/s42003-018-0031-9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cirelli C, Bushey D, Hill S, Huber R, Kreber R, Ganetzky B, Tononi G (2005) Reduced sleep in Drosophila shaker mutants. Nature 434:1087–1092. https://doi.org/10.1038/nature03486

    Article  CAS  PubMed  Google Scholar 

  9. Concetti C, Burdakov D (2021) Orexin/hypocretin and MCH neurons: cognitive and motor roles beyond arousal. Front Neurosci 15:639313

    Article  Google Scholar 

  10. Curran JA, Buhl E, Tsaneva-Atanasova K, Hodge JJL (2019) Age-dependent changes in clock neuron structural plasticity and excitability are associated with a decrease in circadian output behavior and sleep. Neurobiol Aging 77:158–168. https://doi.org/10.1016/j.neurobiolaging.2019.01.025

    Article  PubMed  PubMed Central  Google Scholar 

  11. Donelson N, Kim EZ, Slawson JB, Vecsey CG, Huber R, Griffith LC (2012) High-resolution positional tracking for long-term analysis of drosophila sleep and locomotion using the “tracker” program. PLoS One 7:e37250. https://doi.org/10.1371/journal.pone.0037250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dubowy C, Moravcevic K, Yue Z, Wan JY, van Dongen HPA, Sehgal A (2016) Genetic dissociation of daily sleep and sleep following thermogenetic sleep deprivation in drosophila. Sleep 39:1083–1095. https://doi.org/10.5665/sleep.5760

    Article  PubMed  PubMed Central  Google Scholar 

  13. Duhart JM, Baccini V, Zhang Y, Machado DR, Koh K (2020) Modulation of sleep-courtship balance by nutritional status in drosophila. eLife 9:1–23. https://doi.org/10.7554/eLife.60853

    Article  Google Scholar 

  14. Garbe DS, Bollinger WL, Vigderman A, Masek P, Gertowski J, Sehgal A, Keene AC (2015) Context-specific comparison of sleep acquisition systems in Drosophila. Biol Open 4:1558–1568. https://doi.org/10.1242/bio.013011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gardner B, Strus E, Meng QC, Coradetti T, Naidoo NN, Kelz MB, Williams JA (2016) Sleep homeostasis and general anesthesia: are fruit flies well rested after emergence from propofol? Anesthesiology 124:404–416. https://doi.org/10.1097/ALN.0000000000000939

    Article  CAS  PubMed  Google Scholar 

  16. Geissmann Q, Beckwith EJ, Gilestro GF (2019) Most sleep does not serve a vital function: evidence from Drosophila melanogaster. Sci Adv 5:9253. https://doi.org/10.1126/sciadv.aau9253

    Article  CAS  Google Scholar 

  17. Geissmann Q, Rodriguez LG, Beckwith EJ, Gilestro GF (2019) Rethomics: an R framework to analyse high-throughput behavioural data. PLoS One 14:e0209331. https://doi.org/10.1371/journal.pone.0209331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gilestro GF (2012) Video tracking and analysis of sleep in drosophila melanogaster. Nat Protoc 7:995–1007. https://doi.org/10.1038/nprot.2012.041

    Article  CAS  PubMed  Google Scholar 

  19. Gilestro GF, Cirelli C (2009) PySolo: a complete suite for sleep analysis in drosophila. Bioinformatics 25:1466–1467. https://doi.org/10.1093/bioinformatics/btp237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gizowski C, Bourque CW (2020) Sodium regulates clock time and output via an excitatory GABAergic pathway. Nature 583:421–424. https://doi.org/10.1038/s41586-020-2471-x

    Article  CAS  PubMed  Google Scholar 

  21. Goodwin PR, Meng A, Moore J, Hobin M, Fulga TA, van Vactor D, Griffith LC (2018) MicroRNAs regulate sleep and sleep homeostasis in Drosophila. Cell Rep 23:3776–3786. https://doi.org/10.1016/j.celrep.2018.05.078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guo F, Yu J, Jung HJ, Abruzzi KC, Luo W, Griffith LC, Rosbash M (2016) Circadian neuron feedback controls the Drosophila sleep-activity profile. Nature 536:292–297. https://doi.org/10.1038/nature19097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heigwer F, Port F, Boutros M (2018) Rna interference (RNAi) screening in Drosophila. Genetics 208:853–874. https://doi.org/10.1534/genetics.117.300077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hendricks JC, Finn SM, Panckeri KA, Chavkin J, Williams JA, Sehgal A, Pack AI (2000) Rest in Drosophila is a sleep-like state. Neuron 25:129–138. https://doi.org/10.1016/S0896-6273(00)80877-6

    Article  CAS  PubMed  Google Scholar 

  25. Huber R, Hill SL, Holladay C, Biesiadecki M, Tononi G, Cirelli C (2004) Sleep homeostasis in Drosophila melanogaster. Sleep 27:628–639. https://doi.org/10.1093/sleep/27.4.628

    Article  PubMed  Google Scholar 

  26. Itoh TQ, Matsumoto A (2012) Genome-wide RNA interference screening for the clock-related gene of ATP-binding cassette transporters in Drosophila melanogaster (Diptera: Drosophilidae). Appl Entomol Zool 47:79–86. https://doi.org/10.1007/s13355-012-0091-0

    Article  CAS  Google Scholar 

  27. Jaggard JB, Lloyd E, Lopatto A, Duboue ER, Keene AC (2019) Automated measurements of sleep and locomotor activity in Mexican cavefish. J Vis Exp:e59198. https://doi.org/10.3791/59198

  28. Jin X, Tian Y, Zhang ZC, Gu P, Liu C, Han J (2021) A subset of DN1p neurons integrates thermosensory inputs to promote wakefulness via CNMa signaling. Curr Biol. https://doi.org/10.1016/j.cub.2021.02.048

  29. Jones JR, Tackenberg MC, McMahon DG (2021) Optogenetic methods for the study of circadian rhythms. Methods Mol Biol 2130:325–336. https://doi.org/10.1007/978-1-0716-0381-9_24

    Article  CAS  PubMed  Google Scholar 

  30. Keene AC, Duboue ER (2018) The origins and evolution of sleep. J Exp Biol 221

    Google Scholar 

  31. Klarsfeld A, Leloup JC, Rouyer F (2003) Circadian rhythms of locomotor activity in Drosophila. In: Behavioural Processes. Elsevier, Amsterdam, pp 161–175

    Google Scholar 

  32. Koh K, Joiner WJ, Wu MN, Yue Z, Smith CJ, Sehgal A (2008) Identification of SLEEPLESS, a sleep-promoting factor. Science 321:372–376. https://doi.org/10.1126/science.1155942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kohsaka H, Nose A (2021) Optogenetics in Drosophila. In: Advances in experimental medicine and biology. Springer, Cham, pp 309–320

    Google Scholar 

  34. Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A 68:2112–2116. https://doi.org/10.1073/pnas.68.9.2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kume K, Kume S, Park SK, Hirsh J, Jackson FR (2005) Dopamine is a regulator of arousal in the fruit fly. J Neurosci 25:7377–7384. https://doi.org/10.1523/JNEUROSCI.2048-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kuo TH, Pike DH, Beizaeipour Z, Williams JA (2010) Sleep triggered by an immune response in Drosophila is regulated by the circadian clock and requires the NFκB relish. BMC Neurosci 11:1–12. https://doi.org/10.1186/1471-2202-11-17

    Article  CAS  Google Scholar 

  37. Qiao B, Li C, Allen VW, Shirasu-Hiza M, Syed S (2018) Automated analysis of long-term grooming behavior in Drosophila using a k-nearest neighbors classifier. eLife 7: e34497. https://doi.org/10.7554/eLife.34497

  38. Lin FJ, Pierce MM, Sehgal A, Wu T, Skipper DC, Chabba R (2010) Effect of taurine and caffeine on sleep-wake activity in Drosophila melanogaster. Nat Sci Sleep 2:221–231. https://doi.org/10.2147/NSS.S13034

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liu S, Lamaze A, Liu Q, Tabuchi M, Yang Y, Fowler M, Bharadwaj R, Zhang J, Bedont J, Blackshaw S, Lloyd TE, Montell C, Sehgal A, Koh K, Wu MN (2014) WIDE AWAKE mediates the circadian timing of sleep onset. Neuron 82:151–166. https://doi.org/10.1016/j.neuron.2014.01.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Men J, Li A, Jerwick J, Li Z, Tanzi RE, Zhou C (2020) Non-invasive red-light optogenetic control of Drosophila cardiac function. Commun Biol 3:1–10. https://doi.org/10.1038/s42003-020-1065-3

    Article  CAS  Google Scholar 

  41. Montell C (2021) Drosophila sensory receptors – a set of molecular Swiss army knives. Genetics 217:1–34. https://doi.org/10.1093/GENETICS/IYAA011

    Article  PubMed  PubMed Central  Google Scholar 

  42. Naidoo N, Casiano V, Cater J, Zimmerman J, Pack AI (2007) A role for the molecular chaperone protein BiP/GRP78 in Drosophila sleep homeostasis. Sleep 30:557–565. https://doi.org/10.1093/sleep/30.5.557

    Article  PubMed  Google Scholar 

  43. Nevo E, Rashkovetsky E, Pavlicek T, Korol A (1998) A complex adaptive syndrome in Drosophila caused by microclimatic contrasts. Heredity 80:9–16. https://doi.org/10.1046/j.1365-2540.1998.00274.x

    Article  PubMed  Google Scholar 

  44. de Nobrega AK, Lyons LC (2020) Aging and the clock: perspective from flies to humans. Eur J Neurosci 51:454–481

    Article  Google Scholar 

  45. Owald D, Lin S, Waddell S (2015) Light, heat, action: neural control of fruit fly behaviour. Philos Trans R Soc B Biol Sci 370:20140211

    Article  Google Scholar 

  46. Parisky KM, Agosto Rivera JL, Donelson NC, Kotecha S, Griffith LC (2016) Reorganization of sleep by temperature in Drosophila requires light, the homeostat, and the circadian clock. Curr Biol 26:882–892. https://doi.org/10.1016/j.cub.2016.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pfeiffenberger C, Allada R (2012) Cul3 and the BTB adaptor insomniac are key regulators of sleep homeostasis and a dopamine arousal pathway in drosophila. PLoS Genet 8:e1003003. https://doi.org/10.1371/journal.pgen.1003003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rechtschaffen A, Gilliland MA, Bergmann BM, Winter JB (1983) Physiological correlates of prolonged sleep deprivation in rats. Science 221:182–184. https://doi.org/10.1126/science.6857280

    Article  CAS  PubMed  Google Scholar 

  49. Rogulja D, Young MW (2012) Control of sleep by cyclin a and its regulator. Science 335:1617–1621. https://doi.org/10.1126/science.1212476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rosato E, Kyriacou CP (2006) Analysis of locomotor activity rhythms in Drosophila. Nat Protoc 1:559–568. https://doi.org/10.1038/nprot.2006.79

    Article  PubMed  Google Scholar 

  51. Ryder E, Blows F, Ashburner M, Bautista-Llacer R, Coulson D, Drummond J, Webster J, Gubb D, Gunton N, Johnson G, O’Kane CJ, Huen D, Sharma P, Asztalos Z, Baisch H, Schulze J, Kube M, Kittlaus K, Reuter G, Maroy P, Szidonya J, Rasmuson-Lestander Å, Ekström K, Dickson B, Hugentobler C, Stocker H, Hafen E, Lepesant JA, Pflugfelder G, Heisenberg M, Mechler B, Serras F, Corominas M, Schneuwly S, Preat T, Roote J, Russell S (2004) The DrosDel collection: a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster. Genetics 167:797–813. https://doi.org/10.1534/genetics.104.026658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sayeed O, Benzer S (1996) Behavioral genetics of thermosensation and hygrosensation in Drosophila. Proc Natl Acad Sci U S A 93:6079–6084. https://doi.org/10.1073/pnas.93.12.6079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schmid B, Helfrich-Förster C, Yoshii T (2011) A new ImageJ plug-in “actogramJ” for chronobiological analyses. J Biol Rhythm 26:464–467. https://doi.org/10.1177/0748730411414264

    Article  Google Scholar 

  54. Seggio JA (2011) Utilizing Drosophila Activity Monitors (DAMs) in an undergraduate teaching and research setting. Dros Inf Serv 91:170–173

    Google Scholar 

  55. Sehgal A, Price JL, Man B, Young MW (1994) Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 263:1603–1606. https://doi.org/10.1126/science.8128246

    Article  CAS  PubMed  Google Scholar 

  56. Shafer OT, Keene AC (2021) The regulation of Drosophila sleep. Curr Biol 31:R38–R49

    Article  CAS  Google Scholar 

  57. Shaw PJ, Tortoni G, Greenspan RJ, Robinson DF (2002) Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 417:287–291. https://doi.org/10.1038/417287a

    Article  CAS  PubMed  Google Scholar 

  58. Shi M, Yue Z, Kuryatov A, Lindstrom JM, Sehgal A (2014) Identification of Redeye, a new sleep regulating protein whose expression is modulated by sleep amount. eLife 2014:1473. https://doi.org/10.7554/eLife.01473

    Article  Google Scholar 

  59. Stavropoulos N, Young MW (2011) Insomniac and cullin-3 regulate sleep and wakefulness in drosophila. Neuron 72:964–976. https://doi.org/10.1016/j.neuron.2011.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stoleru D, Peng Y, Agosto J, Rosbash M (2004) Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature 431:862–868. https://doi.org/10.1038/nature02926

    Article  CAS  PubMed  Google Scholar 

  61. Suri V, Qian Z, Hall JC, Rosbash M (1998) Evidence that the TIM light response is relevant to light-induced phase shifts in Drosophila melanogaster. Neuron 21:225–234. https://doi.org/10.1016/S0896-6273(00)80529-2

    Article  CAS  PubMed  Google Scholar 

  62. Toda H, Williams JA, Gulledge M, Sehgal A (2019) A sleep-inducing gene, nemuri, links sleep and immune function in Drosophila. Science 363:509–515. https://doi.org/10.1126/science.aat1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang Y-Y, Ma W-W, Peng I-F (2020) Screening of sleep assisting drug candidates with a Drosophila model. PLoS One 15:e0236318. https://doi.org/10.1371/journal.pone.0236318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Weber F, Dan Y (2016) Circuit-based interrogation of sleep control. Nature 538:51–59

    Article  CAS  Google Scholar 

  65. Williams JA, Su HS, Bernards A, Field J, Sehgal A (2001) A circadian output in Drosophila mediated by neurofibromatosis-1 and Ras/MAPK. Science 293:2251–2256. https://doi.org/10.1126/science.1063097

    Article  CAS  PubMed  Google Scholar 

  66. Wu MN, Koh K, Yue Z, Joiner WJ, Sehgal A (2008) A genetic screen for sleep and circadian mutants reveals mechanisms underlying regulation of sleep in Drosophila. Sleep 31:465–472. https://doi.org/10.1093/sleep/31.4.465

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wu Y, Cao G, Nitabach MN (2008) Electrical silencing of PDF neurons advances the phase of non-PDF clock neurons in Drosophila. J Biol Rhythm 23:117–128. https://doi.org/10.1177/0748730407312984

    Article  Google Scholar 

  68. Zimmerman JE, Chan MT, Jackson N, Maislin G, Pack AI (2012) Genetic background has a major impact on differences in sleep resulting from environmental influences in Drosophila. Sleep 35:545–557. https://doi.org/10.5665/sleep.1744

    Article  PubMed  PubMed Central  Google Scholar 

  69. Research Tools | Vecsey Lab. https://academics.skidmore.edu/blogs/cvecsey/?page_id=57. Accessed 12 May 2021

  70. ClockLab | Actimetrics. https://actimetrics.com/products/clocklab/. Accessed 12 May 2021

Download references

Acknowledgments

This research was supported by WPI, JSPS KAKENHI Grant Numbers JP20K21441 and 20H03291, Kanae foundation, Inamori foundation to H.T. and NIH #R01-GM123783 to J.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Toda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Miyazaki, T., Williams, J.A., Toda, H. (2022). Measuring Sleep in Drosophila. In: Yamamoto, D. (eds) Behavioral Neurogenetics. Neuromethods, vol 181. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2321-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2321-3_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2320-6

  • Online ISBN: 978-1-0716-2321-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics