Skip to main content

Measuring the Mitochondrial Ubiquinone (Q) Pool Redox State in Isolated Respiring Mitochondria

  • Protocol
  • First Online:
Mitochondria

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2497))

Abstract

The ubiquinone (Q) pool represents a node in the mitochondrial electron transport chain (ETC) onto which the electrons of all respiratory dehydrogenases converge. The redox state of the Q pool correlates closely with the electron flux through the ETC and is thus a parameter of great metabolic value for both the mitochondrial and cellular metabolism. Here, we describe the simultaneous measurement of respiratory rates of isolated mouse heart mitochondria and the redox state of their Q pool using a custom-made combination of a Clark-type oxygen electrode and a Q electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore AL, Bonner WD, Rich PR (1978) The determination of the proton-motive force during cyanide-insensitive respiration in plant mitochondria. Arch Biochem Biophys 186:298–306

    Article  CAS  Google Scholar 

  2. Dry IB, Moore AL, Day DA, Wiskich JT (1989) Regulation of alternative pathway activity in plant mitochondria: nonlinear relationship between electron flux and the redox poise of the quinone pool. Arch Biochem Biophys 273:148–157

    Article  CAS  Google Scholar 

  3. Perales-Clemente E, Bayona-Bafaluy MP, Pérez-Martos A et al (2008) Restoration of electron transport without proton pumping in mammalian mitochondria. Proc Natl Acad Sci U S A 105:18735–18739. https://doi.org/10.1073/pnas.0810518105

    Article  Google Scholar 

  4. Moore AL, Dry IB, Wiskich JT (1988) Measurement of the redox state of the ubiquinone pool in plant mitochondria. FEBS Lett 235:76–80. https://doi.org/10.1016/0014-5793(88)81237-7

    Article  CAS  Google Scholar 

  5. Lemieux H, Blier PU, Gnaiger E (2017) Remodeling pathway control of mitochondrial respiratory capacity by temperature in mouse heart: electron flow through the Q-junction in permeabilized fibers. Sci Rep 7:2840. https://doi.org/10.1038/s41598-017-02789-8

    Article  CAS  Google Scholar 

  6. Zannoni D, Moore AL (1990) Measurement of the redox state of the ubiquinone pool in Rhodobacter capsulatus membrane fragments. FEBS Lett 271:123–127. https://doi.org/10.1016/0014-5793(90)80387-x

    Article  CAS  Google Scholar 

  7. Van den Bergen CW, Wagner AM, Krab K, Moore AL (1994) The relationship between electron flux and the redox poise of the quinone pool in plant mitochondria. Interplay between quinol-oxidizing and quinone-reducing pathways. Eur J Biochem 226:1071–1078. https://doi.org/10.1111/j.1432-1033.1994.01071.x

    Article  Google Scholar 

  8. Palmer JW, Tandler B, Hoppel CL (1977) Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 252:8731–8739

    Article  CAS  Google Scholar 

  9. Weinstein ES, Benson DW, Fry DE (1986) Subpopulations of human heart mitochondria. J Surg Res 40:495–498

    Article  CAS  Google Scholar 

  10. Fannin SW, Lesnefsky EJ, Slabe TJ et al (1999) Aging selectively decreases oxidative capacity in rat heart interfibrillar mitochondria. Arch Biochem Biophys 372:399–407. https://doi.org/10.1006/abbi.1999.1508

    Article  CAS  Google Scholar 

  11. Laird AK, Nygaard O, Ris H, Barton AD (1953) Separation of mitochondria into two morphologically and biochemically distinct types. Exp Cell Res 5:147–160. https://doi.org/10.1016/0014-4827(53)90100-1

    Article  CAS  Google Scholar 

  12. Affourtit C, Krab K, Leach GR et al (2001) New insights into the regulation of plant succinate dehydrogenase. On the role of the protonmotive force. J Biol Chem 276:32567–32574. https://doi.org/10.1074/jbc.M103111200

    Article  CAS  Google Scholar 

  13. Affourtit C, Albury MS, Krab K, Moore AL (1999) Functional expression of the plant alternative oxidase affects growth of the yeast Schizosaccharomyces pombe. J Biol Chem 274:6212–6218. https://doi.org/10.1074/jbc.274.10.6212

    Article  CAS  Google Scholar 

  14. Affourtit C, Krab K, Moore AL (2001) Control of plant mitochondrial respiration. Biochim Biophys Acta 1504:58–69

    Article  CAS  Google Scholar 

  15. Wagner AM, Krab K, Wagner MJ, Moore AL (2008) Regulation of thermogenesis in flowering Araceae: the role of the alternative oxidase. Biochim Biophys Acta 1777:993–1000. https://doi.org/10.1016/j.bbabio.2008.04.001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Howard T. Jacobs for valuable discussions and financial support by the European Research Council (Advanced Grant 232738), the Academy of Finland (Centre of Excellence grant 272376 and Academy Professorship grant 256615), and the Tampere University Medical Research Fund (to H.T.J.). A.L.M. gratefully acknowledges funding support from University of Sussex and the BBSRC (BB/L022915/1 and BB/NO10051/1). C.V. acknowledges the kind support from Associazione Luigi Comini ONLUS and Telethon Foundation, Italy (grants GGP19007, 23706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marten Szibor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Szibor, M., Heyne, E., Viscomi, C., Moore, A.L. (2022). Measuring the Mitochondrial Ubiquinone (Q) Pool Redox State in Isolated Respiring Mitochondria. In: Tomar, N. (eds) Mitochondria. Methods in Molecular Biology, vol 2497. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2309-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2309-1_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2308-4

  • Online ISBN: 978-1-0716-2309-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics