Skip to main content

Measuring Mitochondrial Function: From Organelle to Organism

  • Protocol
  • First Online:
Mitochondria

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2497))

Abstract

Mitochondrial energy production is crucial for normal daily activities and maintenance of life. Herein, the logic and execution of two main classes of measurements are outlined to delineate mitochondrial function: ATP production and oxygen consumption. Aerobic ATP production is quantified by phosphorus magnetic resonance spectroscopy (31PMRS) in vivo in both human subjects and animal models using the same protocols and maintaining the same primary assumptions. Mitochondrial oxygen consumption is quantified by oxygen polarography and applied in isolated mitochondria, cultured cells, and permeabilized fibers derived from human or animal tissue biopsies. Traditionally, mitochondrial functional measures focus on maximal oxidative capacity—a flux rate that is rarely, if ever, observed outside of experimental conditions. Perhaps more physiologically relevant, both measurement classes herein focus on one principal design paradigm; submaximal mitochondrial fluxes generated by graded levels of ADP to map the function for ADP sensitivity. We propose this function defines the bioenergetic role that mitochondria fill within the myoplasm to sense and match ATP demands. Any deficit in this vital role for ATP homeostasis leads to symptoms often seen in cardiovascular and cardiopulmonary diseases, diabetes, and metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Meyer RA, Wiseman RW (2011) The metabolic systems: control of ATP synthesis in skeletal muscle. In: ACSM’s advanced exercise physiology, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, pp 363–378

    Google Scholar 

  2. Hargreaves M, Spriet LL (2020) Skeletal muscle energy metabolism during exercise. Nat Metab 2:817–828

    Article  CAS  Google Scholar 

  3. Lewis MT, Kasper JD, Bazil JN et al (2019) Quantification of mitochondrial oxidative phosphorylation in metabolic disease: application to type 2 diabetes. Int J Mol Sci 20(21):5271

    Article  CAS  Google Scholar 

  4. Weiss K, Schär M, Panjrath GS et al (2017) Fatigability, exercise intolerance, and abnormal skeletal muscle energetics in heart failure. Circ Hear Fail 10(7):e004129

    Article  Google Scholar 

  5. Hart CR, Layec G, Trinity JD et al (2018) Oxygen availability and skeletal muscle oxidative capacity in patients with peripheral artery disease: Implications from in vivo and in vitro assessments. Am J Physiol Heart Circ Physiol 315:H897–H909

    Article  CAS  Google Scholar 

  6. Adami A, Cao R, Porszasz J et al (2017) Reproducibility of NIRS assessment of muscle oxidative capacity in smokers with and without COPD. Respir Physiol Neurobiol 235:18–26

    Article  CAS  Google Scholar 

  7. Genders AJ, Holloway GP, Bishop DJ (2020) Are alterations in skeletal muscle mitochondria a cause or consequence of insulin resistance? Int J Mol Sci 21:6948

    Article  CAS  Google Scholar 

  8. Henriquez-Olguin C, Meneses-Valdes R, Jensen TE (2020) Compartmentalized muscle redox signals controlling exercise metabolism – current state, future challenges. 35:101473

    Google Scholar 

  9. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  Google Scholar 

  10. Balaban RS (2009) The role of Ca2+ signaling in the coordination of mitochondrial ATP production with cardiac work. Biochim Biophys Acta Bioenerg 1787(11):1334–1341

    Article  CAS  Google Scholar 

  11. Brand MD (2014) The role of mitochondria in longevity and healthspan. Longev Heal 3:7

    Article  Google Scholar 

  12. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435:297–312

    Article  CAS  Google Scholar 

  13. Brooks GA (1997) Importance of the “crossover” concept in exercise metabolism. Clin Exp Pharmacol Physiol 24:889–895

    Article  CAS  Google Scholar 

  14. Forbes SC, Paganini AT, Slade JM et al (2009) Phosphocreatine recovery kinetics following low- and high-intensity exercise in human triceps surae and rat posterior hindlimb muscles. Am J Physiol Integr Comp Physiol 296:R161–R170

    Article  CAS  Google Scholar 

  15. Paganini AT, Foley JM, Meyer RA (1997) Linear dependence of muscle phosphocreatine kinetics on oxidative capacity. Am J Physiol Cell Physiol 272(2 Pt 1):C501–C510

    Article  CAS  Google Scholar 

  16. Gadian DG (1982) Nuclear magnetic resonance and its applications to living systems. Oxford University Press, New York

    Google Scholar 

  17. Naressi A, Couturier C, Castang I et al (2001) Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med 31:269–286

    Article  CAS  Google Scholar 

  18. Meyerspeer M, Boesch C, Cameron D et al (2020) P magnetic resonance spectroscopy in skeletal muscle: experts’ consensus recommendations. NMR Biomed 34(5):e4246

    Google Scholar 

  19. Meyer RA, Foley JM (1996) Cellular processes integrating the metabolic response to exercise. In: Comprehensive physiology. American Cancer Society, New York, pp 841–869

    Chapter  Google Scholar 

  20. McCully KK, Fielding RA, Evans WJ et al (1993) Relationships between in vivo and in vitro measurements of metabolism in young and old human calf muscles. J Appl Physiol (1985) 75(2):813–819

    Article  CAS  Google Scholar 

  21. Thompson CH, Kemp GJ, Sanderson AL et al (1995) Skeletal muscle mitochondrial function studied by kinetic analysis of postexercise phosphocreatine resynthesis. J Appl Physiol 78:2131–2139

    Article  CAS  Google Scholar 

  22. Chance B, Leigh JS, Clark BJ et al (1985) Control of oxidative metabolism and oxygen delivery in human skeletal muscle: a steady-state analysis of the work/energy cost transfer function. Proc Natl Acad Sci 82:8384–8388

    Article  CAS  Google Scholar 

  23. Kushmerick MJ, Meyer RA, Brown TR (1992) Regulation of oxygen consumption in fast- and slow-twitch muscle. Am J Physiol 263(3 Pt 1):C598–C606

    Article  CAS  Google Scholar 

  24. Dudley GA, Tullson PC, Terjung RL (1987) Influence of mitochondrial content on the sensitivity of respiratory control. J Biol Chem 262:9109–9114

    Article  CAS  Google Scholar 

  25. Holloszy JO (1967) Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242:2278–2282

    Article  CAS  Google Scholar 

  26. Gollnick PD, Saltin B (1982) Significance of skeletal muscle oxidative enzyme enhancement with endurance training. Clin Physiol 2:1–12

    Article  CAS  Google Scholar 

  27. Connett RJ, Honig CR, Gayeski TEJ et al (1990) Defining hypoxia: a systems view of V̇O2, glycolysis, energetics, and intracellular PO2. J Appl Physiol (1985) 68(3):833–842

    Article  CAS  Google Scholar 

  28. Haseler LJ, Richardson RS, Videen JS et al (1998) Phosphocreatine hydrolysis during submaximal exercise: the effect of FI(O2). J Appl Physiol 85:1457–1463

    Article  CAS  Google Scholar 

  29. Haseler LJ, Lin AP, Richardson RS (2004) Skeletal muscle oxidative metabolism in sedentary humans: 31P-MRS assessment of O2 supply and demand limitations. J Appl Physiol 97:1077–1081

    Article  Google Scholar 

  30. Cree-Green M, Scalzo RL, Harrall K et al (2018) Supplemental oxygen improves in vivo mitochondrial oxidative phosphorylation flux in sedentary obese adults with type 2 diabetes. Diabetes 67:1369–1379

    Article  CAS  Google Scholar 

  31. Boss A, Heskamp L, Breukels V et al (2018) Oxidative capacity varies along the length of healthy human tibialis anterior. J Physiol 596:1467–1483

    Article  CAS  Google Scholar 

  32. Kasper JD, Meyer RA, Beard DA et al (2019) Effects of altered pyruvate dehydrogenase activity on contracting skeletal muscle bioenergetics. Am J Physiol Integr Comp Physiol 316:R76–R86

    Article  CAS  Google Scholar 

  33. Lewis MT, Kasper JD, Bazil JN et al (2019) Skeletal muscle energetics are compromised only during high-intensity contractions in the goto-kakizaki rat model of type 2 diabetes. Am J Physiol Regul Integr Comp Physiol 317:R356–R368

    Article  CAS  Google Scholar 

  34. Harris RC, Hultman E, Nordesjö LO (1974) Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand J Clin Lab Invest 33:109–120

    Article  CAS  Google Scholar 

  35. Taylor DJ, Bore PJ, Styles P et al (1983) Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Mol Biol Med 1:77–94

    CAS  Google Scholar 

  36. Kemp GJ, Meyerspeer M, Moser E (2007) Absolute quantification of phosphorus metabolite concentrations in human musclein vivo by31P MRS: a quantitative review. NMR Biomed 20:555–565

    Article  CAS  Google Scholar 

  37. Kushmerick MJ, Moerland TS, Wiseman RW (1992) Mammalian skeletal muscle fibers distinguished by contents of phosphocreatine, ATP, and Pi. Proc Natl Acad Sci U S A 89:7521–7525

    Article  CAS  Google Scholar 

  38. Adams GR, Foley JM, Meyer RA (1990) Muscle buffer capacity estimated from pH changes during rest-to-work transitions. J Appl Physiol 69:968–972

    Article  CAS  Google Scholar 

  39. Blei ML, Conley KE, Kushmerick MJ (1993) Separate measures of ATP utilization and recovery in human skeletal muscle. J Physiol 465:203–222

    Article  CAS  Google Scholar 

  40. Wiseman RW, Ellington WR, Rosanske RC (1989) Effects of extracellular pH and D-lactate efflux on regulation of intracellular pH during isotonic contractions in a molluscan muscle: a 31p-nuclear magnetic resonance study. J Exp Zool 252:228–236

    Article  CAS  Google Scholar 

  41. Blei ML, Conley KE, Odderson IR et al (1993) Individual variation in contractile cost and recovery in a human skeletal muscle. Proc Natl Acad Sci U S A 90:7396–7400

    Article  CAS  Google Scholar 

  42. Foley JM, Meyer RA (1993) Energy cost of twitch and tetanic contractions of rat muscle estimated in situ by gated 31P NMR. NMR Biomed 6:32–38

    Article  CAS  Google Scholar 

  43. Connett RJ, Gayeski TEJ, Honig CR (1985) Energy sources in fully aerobic rest-work transitions: a new role for glycolysis. Am J Physiol 248(6 Pt 2):H922–H929

    CAS  Google Scholar 

  44. Roman BB, Meyer RA, Wiseman RW (2002) Phosphocreatine kinetics at the onset of contractions in skeletal muscle of MM creatine kinase knockout mice. Am J Physiol Cell Physiol 283:C1776–C1783

    Article  CAS  Google Scholar 

  45. Richardson RS, Wary C, Wray DW et al (2015) MRS evidence of adequate O2 supply in human skeletal muscle at the onset of exercise. Med Sci Sports Exerc 47:2299–2307

    Article  CAS  Google Scholar 

  46. Meyer RA (1989) Linear dependence of muscle phosphocreatine kinetics on total creatine content. Am J Physiol Cell Physiol 257(6 Pt 1):C1149–C1157

    Article  CAS  Google Scholar 

  47. Meyer RA, Sweeney HL, Kushmerick MJ (1984) A simple analysis of the “phosphocreatine shuttle”. Am J Physiol Cell Physiol 246(5 Pt 1):C365–C377

    Article  CAS  Google Scholar 

  48. Gadian DG, Radda GK, Chance EM et al (1981) The activity of creatine kinase in frog skeletal muscle studied by saturation-transfer nuclear magnetic resonance. Biochem J 194(1):215–228

    Article  CAS  Google Scholar 

  49. McGilvery RW, Murray TW (1974) Calculated equilibria of phosphocreatine and adenosine phosphates during utilization of high energy phosphate by muscle. J Biol Chem 249:5845–5850

    Article  CAS  Google Scholar 

  50. Veech RL, Lawson JWR, Cornell NW et al (1979) Cytosolic phosphorylation potential. J Biol Chem 254(14):6538–6547

    Article  CAS  Google Scholar 

  51. Gifford JR, Garten RS, Nelson AD et al (2016) Symmorphosis and skeletal muscle V˙O2 max: in vivo and in vitro measures reveal differing constraints in the exercise-trained and untrained human. J Physiol 594:1741–1751

    Article  CAS  Google Scholar 

  52. Andersen P, Saltin B (1985) Maximal perfusion of skeletal muscle in man. J Physiol 366:233–249

    Article  CAS  Google Scholar 

  53. Layec G, Malucelli E, Le FY et al (2013) Effects of exercise-induced intracellular acidosis on the phosphocreatine recovery kinetics: a 31P MRS study in three muscle groups in humans. NMR Biomed 26:1403–1411

    Article  CAS  Google Scholar 

  54. Van Den BNMA, De FHMML, De GL et al (2007) Intersubject differences in the effect of acidosis on phosphocreatine recovery kinetics in muscle after exercise are due to differences in proton efflux rates. Am J Physiol Cell Physiol 293(1):C228–C237

    Article  Google Scholar 

  55. Harkema SJ, Meyer RA (1997) Effect of acidosis on control of respiration in skeletal muscle. Am J Physiol Cell Physiol 272(2 Pt 1):C491–C500

    Article  CAS  Google Scholar 

  56. Jubrias SA, Crowther GJ, Shankland EG et al (2003) Acidosis inhibits oxidative phosphorylation in contracting human skeletal muscle in vivo. J Physiol 553:589–599

    Article  CAS  Google Scholar 

  57. Walter G, Vandenborne K, McCully KK et al (1997) Noninvasive measurement of phosphocreatine recovery kinetics in single human muscles. Am J Physiol Cell Physiol 272(2 Pt 1):C525–C534

    Article  CAS  Google Scholar 

  58. Clark LC, Wolf R, Granger D et al (1953) Continuous recording of blood oxygen tensions by polarography. J Appl Physiol 6:189–193

    Article  CAS  Google Scholar 

  59. Levitsky Y, Pegouske DJ, Hammer SS et al (2019) Micro-respirometry of whole cells and isolated mitochondria. RSC Adv 9:33257–33267

    Article  CAS  Google Scholar 

  60. Gerencser AA, Neilson A, Choi SW et al (2009) Quantitative microplate-based respirometry with correction for oxygen diffusion. Anal Chem 81:6868–6878

    Article  CAS  Google Scholar 

  61. Rogers GW, Brand MD, Petrosyan S et al (2011) High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PLoS One 6:e21746

    Article  CAS  Google Scholar 

  62. Divakaruni AS, Paradyse A, Ferrick DA et al (2014) Analysis and interpretation of microplate-based oxygen consumption and pH data. Elsevier, Amsterdam

    Book  Google Scholar 

  63. Papkovsky DB, Dmitriev RI (2013) Biological detection by optical oxygen sensing. Chem Soc Rev. 42:8700–8732

    Article  CAS  Google Scholar 

  64. Oomen PE, Skolimowski M, Verpoorte S (2016) Implementing oxygen control in chip-based cell and tissue culture systems. Lab Chip 16:3394–3414

    Article  CAS  Google Scholar 

  65. Divakaruni AS, Wiley SE, Rogers GW et al (2013) Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc Natl Acad Sci 110:5422–5427

    Article  CAS  Google Scholar 

  66. Haller T, Ortner M, Gnaiger E (1994) A respirometer for investigating oxidative cell metabolism: toward optimization of respiratory studies. Anal Biochem 218:338–342

    Article  CAS  Google Scholar 

  67. Duong QV, Hoffman A, Zhong K et al (2020) Calcium overload decreases net free radical emission in cardiac mitochondria. Mitochondrion 51:126–139

    Article  CAS  Google Scholar 

  68. Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem 217:409–427

    Article  CAS  Google Scholar 

  69. Gnaiger E (2014) Mitochondrial pathways and respiratory control an introduction to OXPHOS analysis. Bioenerg Commun 2:122

    Google Scholar 

  70. Picard M, Ritchie D, Wright KJ et al (2010) Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permeabilized myofibers. Aging Cell 9:1032–1046

    Article  CAS  Google Scholar 

  71. Steinlechner-Maran R, Eberl T, Kunc M et al (1996) Oxygen dependence of respiration in coupled and uncoupled endothelial cells. Am J Physiol Cell Physiol 271(6 Pt 1):C2053–C2061

    Article  CAS  Google Scholar 

  72. Wollenman LC, Vander PMR, Miller ML et al (2017) The effect of respiration buffer composition on mitochondrial metabolism and function. PLoS One 12:1–19

    Article  Google Scholar 

  73. Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. J Biol 1:409–428

    Google Scholar 

  74. Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. IV. The respiratory chain. J Biol Chem 217:429–438

    Article  CAS  Google Scholar 

  75. Kuznetsov AV, Strobl D, Ruttmann E et al (2002) Evaluation of mitochondrial respiratory function in small biopsies of liver. Anal Biochem 305:186–194

    Article  CAS  Google Scholar 

  76. Gnaiger E (2008) Polarographic oxygen sensors, the oxygraph, and high-resolution respirometry to assess mitochondrial function. In: Dykens JA, Will Y (eds) Drug-induced mitochondrial dysfunction. John Wiley & Sons, Hoboken, pp 327–351

    Google Scholar 

  77. Kuznetsov AV, Veksler V, Gellerich FN et al (2008) Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc 3:965–976

    Article  CAS  Google Scholar 

  78. Veksler VI, Kuznetsov AV, Sharov VG et al (1987) Mitochondrial respiratory parameters in cardiac tissue: a novel method of assessment by using saponin-skinned fibers. Biochim Biophys Acta 892:191–196

    Article  CAS  Google Scholar 

  79. Saks VA, Veksler VI, Kuznetsov AV et al (1998) Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo. Mol Cell Biochem 184:81–100

    Article  CAS  Google Scholar 

  80. Hutter E, Renner K, Pfister G et al (2004) Senescence-associated changes in respiration and oxidative phosphorylation in primary human fibroblasts. Biochem J 380:919–928

    Article  CAS  Google Scholar 

  81. Keuper M, Jastroch M, Yi CX et al (2014) Spare mitochondrial respiratory capacity permits human adipocytes to maintain ATP homeostasis under hypoglycemic conditions. FASEB J 28:761–770

    Article  CAS  Google Scholar 

  82. Divakaruni AS, Hsieh WY, Minarrieta L et al (2018) Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis. Cell Metab 28:490–503.e7

    Article  CAS  Google Scholar 

  83. Pesta D, Gnaiger E (2012) High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol 810:25–58

    Article  CAS  Google Scholar 

  84. Brand MD, Chien LF, Diolez P (1994) Experimental discrimination between proton leak and redox slip during mitochondrial electron transport. Biochem J 297:27–29

    Article  CAS  Google Scholar 

  85. Harper M, Brand D (1993) The quantitative contributions of mitochondrial proton leak and ATP turnover reactions to the changed respiration rates of hepatocytes from rats of different thyroid status. J Biol Chem 268:14850–14860

    Article  CAS  Google Scholar 

  86. Ruas JS, Siqueira-Santos ES, Amigo I et al (2016) Underestimation of the maximal capacity of the mitochondrial electron transport system in oligomycin-treated cells. PLoS One 11:1–20

    Article  Google Scholar 

  87. Murphy MP (2001) How understanding the control of energy metabolism can help investigation of mitochondrial dysfunction, regulation and pharmacology. Biochim Biophys Acta 1504:1–11

    Article  CAS  Google Scholar 

  88. Rolfe DFS, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 77:731–758

    Article  CAS  Google Scholar 

  89. Jaber SM, Yadava N, Polster BM (2020) Mapping mitochondrial respiratory chain deficiencies by respirometry: beyond the mito stress test. Exp Neurol 328:113282

    Article  CAS  Google Scholar 

  90. Larsen S, Nielsen J, Hansen CN et al (2012) Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol 590:3349–3360

    Article  CAS  Google Scholar 

  91. Fell DA (1997) Understanding the control of metabolism. Ashgate Publishing, Surrey

    Google Scholar 

  92. Eigentler A, Draxl A, Wiethüchter A (2015) Laboratory protocol: citrate synthase a mitochondrial marker enzyme. Mitochondrial Physiol Netw 04:1–11

    Google Scholar 

  93. Salabei JK, Gibb AA, Hill BG (2014) Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis. Nat Protoc 9:421–438

    Article  CAS  Google Scholar 

  94. Kunz WS, Kuznetsov AV, Schulze W et al (1993) Functional characterization of mitochondrial oxidative phosphorylation in saponin-skinned human muscle fibers. Biochim Biophys Acta 1144:46–53

    Article  CAS  Google Scholar 

  95. Kongas O, Yuen TL, Wagner MJ et al (2002) High Km of oxidative phosphorylation for ADP in skinned muscle fibers: where does it stem from? Am J Physiol Cell Physiol 283:743–751

    Article  Google Scholar 

  96. Gayeski TEJ, Honig CR (1986) O2 gradients from sarcolemma to cell interior in red muscle at maximal V̇O2. Am J Physiol 251(4 Pt 2):H789–H799

    CAS  Google Scholar 

  97. Metelkin E, Goryanin I, Demin O (2006) Mathematical modeling of mitochondrial adenine nucleotide translocase. Biophys J 90:423–432

    Article  CAS  Google Scholar 

  98. Saks VA, Kuznetsov A, Andrienko T et al (2003) Heterogeneity of ADP diffusion and regulation of respiration in cardiac cells. Biophys J 84:3436–3456

    Article  CAS  Google Scholar 

  99. Wiseman RW, Jeneson JAL, Kushmerick MJ (1996) Why is the sensitivity of mitochondria to ADP over tenfold lower in permeabilized fibers than in vivo? Biothermokinetics living cell. Biothermokinetics Press, Amsterdam, pp 124–127

    Google Scholar 

  100. Saks VA, Belikova YO, Kuznetsov AV (1991) In vivo regulation of mitochondrial respiration in cardiomyocytes: specific restrictions for intracellular diffusion of ADP. Biochim Biophys Acta 1074:302–311

    Article  CAS  Google Scholar 

  101. Scheibye-Knudsen M, Quistorff B (2009) Regulation of mitochondrial respiration by inorganic phosphate; comparing permeabilized muscle fibers and isolated mitochondria prepared from type-1 and type-2 rat skeletal muscle. Eur J Appl Physiol 105:279–287

    Article  CAS  Google Scholar 

  102. Kuznetsov AV, Lassnig B, Margreiter R et al (1998) Diffusion limitation of oxygen versus ADP in permeabilized muscle fibers. In: Biothermokinetics post genomic era. Chalmers Reproservice, Göteborg, pp 273–276

    Google Scholar 

  103. Gnaiger E (2003) Oxygen conformance of cellular respiration: a perspective of mitochondrial physiology. Adv Exp Med Biol 543:39–55

    Article  CAS  Google Scholar 

  104. Miotto PM, LeBlanc PJ, Holloway GP (2018) High-fat diet causes mitochondrial dysfunction as a result of impaired ADP sensitivity. Diabetes 67:2199–2205

    Article  CAS  Google Scholar 

  105. Hart CR, Lanza IR (2018) Mitochondrial ADP sensitivity and transport: new insights into diet-induced mitochondrial impairments. Diabetes 67(11):2152–2153

    Article  CAS  Google Scholar 

  106. Dirks ML, Miotto PM, Goossens GH et al (2020) Short-term bed rest-induced insulin resistance cannot be explained by increased mitochondrial H2O2 emission. J Physiol 598:123–137

    Article  CAS  Google Scholar 

  107. Kasper JD (2018) The role and regulation of pyruvate dehydrogenase in skeletal muscle bioenergetics and type 2 diabetes. Diabetes Med J 38(3):181–186

    Google Scholar 

  108. Richardson RS, Noyszewski EA, Kendrick KF et al (1995) Myoglobin O2 desaturation during exercise: evidence of limited O2 transport. J Clin Invest 96:1916–1926

    Article  CAS  Google Scholar 

  109. Rodenburg JB, De BRW, Jeneson JAL et al (1994) 31P-MRS and simultaneous quantification of dynamic human quadriceps exercise in a whole body MR scanner. J Appl Physiol 77:1021–1029

    Article  CAS  Google Scholar 

  110. Whipp BJ, Rossiter HB, Ward SA et al (1999) Simultaneous determination of muscle and O2 uptake kinetics during whole body NMR spectroscopy. J Appl Physiol 86:742–747

    Article  CAS  Google Scholar 

  111. Jaber Y, Jimenez Francisco E, Bartlett MF et al (2020) Magnetic resonance compatible knee extension ergometer. J Biomech Eng 142(9):095001

    Article  Google Scholar 

  112. Ryschon TW, Fowler MD, Wysong RE et al (1997) Efficiency of human skeletal muscle in vivo: comparison of isometric, concentric, and eccentric muscle action. J Appl Physiol 83:867–874

    Article  CAS  Google Scholar 

  113. Amara CE, Shankland EG, Jubrias SA et al (2007) Mild mitochondrial uncoupling impacts cellular aging in human muscles in vivo. Proc Natl Acad Sci U S A 104:1057–1062

    Article  CAS  Google Scholar 

  114. Amara CE, Marcinek DJ, Shankland EG et al (2008) Mitochondrial function in vivo: spectroscopy provides window on cellular energetics. Methods 46:312–318

    Article  CAS  Google Scholar 

  115. McConnell DG (1965) The isolation of retinal outer segment fragments. J Cell Biol 27:459–473

    Article  CAS  Google Scholar 

  116. Greif RL, Alfano JA, Eich E (1966) Density gradient centrifugation of liver mitochondria from normal and thyrotoxic rats. Endocrinology 78:733–736

    Article  CAS  Google Scholar 

  117. Parsons DF, Williams GR, Chance B (1966) Characteristics of isolated and purified preparations of the outer and inner membranes of mitochondria. Ann N Y Acad Sci 137:643–666

    Article  CAS  Google Scholar 

  118. Messer JI, Jackman MR, Willis WT (2004) Pyruvate and citric acid cycle carbon requirements in isolated skeletal muscle mitochondria. Am J Physiol Cell Physiol 286(3):C565–C572

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by financial support from the National Institutes of Health grants R00 HL121160, R01HL137694, R01 AG060731 and R01-DK095210 and fellowship F30EY030029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Wiseman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lewis, M.T., Levitsky, Y., Bazil, J.N., Wiseman, R.W. (2022). Measuring Mitochondrial Function: From Organelle to Organism. In: Tomar, N. (eds) Mitochondria. Methods in Molecular Biology, vol 2497. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2309-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2309-1_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2308-4

  • Online ISBN: 978-1-0716-2309-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics