Skip to main content

A Text Mining Protocol for Extracting Drug–Drug Interaction and Adverse Drug Reactions Specific to Patient Population, Pharmacokinetics, Pharmacodynamics, and Disease

  • Protocol
  • First Online:
Biomedical Text Mining

Abstract

Drug-drug interactions (DDIs) and adverse drug reactions (ADR) are experienced by many patients, especially by elderly population due to their multiple comorbidities and polypharmacy. Databases such as PubMed contain hundreds of abstracts with DDI and ADR information. PubMed is being updated every day with thousands of abstracts. Therefore, manually retrieving the data and extracting the relevant information is tedious task. Hence, automated text mining approaches are required to retrieve DDI and ADR information from PubMed. Recently we developed a hybrid approach for predicting DDI and ADR information from PubMed. There are many other existing approaches for retrieving DDI and ADR information from PubMed. However, none of the approaches are meant for retrieving DDI and ADR specific to patient population, gender, pharmacokinetics, and pharmacodynamics. Here, we present a text mining protocol which is based on our recent work for retrieving DDI and ADR information specific to patient population, gender, pharmacokinetics, and pharmacodynamics from PubMed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Organization WH (1973) Handbook of resolutions and decisions of the world health assembly and the executive board. v. 1: cumu. Geneva PP—Geneva: world health. Organization. Available from: https://apps.who.int/iris/handle/10665/79012

  2. Manzi SF, Shannon M (2005) Drug interactions—a review. Clin Pediatr Emerg Med 6:93–102. Available from: http://www.sciencedirect.com/science/article/pii/S152284010500056X

    Article  Google Scholar 

  3. Cascorbi I (2012) Drug interactions - principles, examples and clinical consequences. Dtsch Arztebl Int 109(33-34):546–555; quiz 556

    PubMed  PubMed Central  Google Scholar 

  4. Kato R, Ueno K, Imano H, Kawai M, Kuwahara S, Tsuchishita Y et al (2002) Impairment of ciprofloxacin absorption by calcium Polycarbophil. J Clin Pharmacol 42:806–811. Available from: http://doi.wiley.com/10.1177/009127002401102641

    Article  CAS  PubMed  Google Scholar 

  5. Faraji B, Yu P-P (1998) Serum phenytoin levels of patients on gastrostomy tube feeding. J Neurosci Nurs 30:55–59. Available from: http://journals.lww.com/01376517-199802000-00001

    Article  CAS  PubMed  Google Scholar 

  6. Finch A, Pillans P (2014) P-glycoprotein and its role in drug-drug interactions. Aust Prescr 37:137–139. Available from: https://www.nps.org.au/australian-prescriber/magazine/37/4/137/9

    Article  Google Scholar 

  7. Alomar MJ (2014) Factors affecting the development of adverse drug reactions (review article). Saudi Pharm J 22:83–94. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1319016413000170

    Article  PubMed  Google Scholar 

  8. Anderson BJ, Holford NHG (2008) Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol 48:303–332. Available from: http://www.annualreviews.org/doi/10.1146/annurev.pharmtox.48.113006.094708

    Article  CAS  PubMed  Google Scholar 

  9. Zhao W, Elie V, Roussey G, Brochard K, Niaudet P, Leroy V et al (2009) Population pharmacokinetics and pharmacogenetics of tacrolimus in De novo pediatric kidney transplant recipients. Clin Pharmacol Ther 86:609–618. Available from: http://doi.wiley.com/10.1038/clpt.2009.210

    Article  CAS  PubMed  Google Scholar 

  10. Rhodin MM, Anderson BJ, Peters AM, Coulthard MG, Wilkins B, Cole M et al (2009) Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol 24:67–76. Available from: http://link.springer.com/10.1007/s00467-008-0997-5

    Article  PubMed  Google Scholar 

  11. Kalra B (2007) Cytochrome P450 enzyme isoforms and their therapeutic implications: an update. Indian J Med Sci 61:102. Available from: http://www.indianjmedsci.org/text.asp?2007/61/2/102/30351

    Article  PubMed  Google Scholar 

  12. Henderson L, Yue QY, Bergquist C, Gerden B, Arlett P (2002) St John’s wort (Hypericum perforatum): drug interactions and clinical outcomes. Br. J. Clin. Pharmacol 54(4):349–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hammerness P, Basch E, Ulbricht C, Barrette EP, Foppa I, Basch S et al (2003) St. John’s wort: a systematic review of adverse effects and drug interactions for the consultation psychiatrist. Psychosomatics 44(4):271–282

    Article  CAS  PubMed  Google Scholar 

  14. Izzo AA (2012) Interactions between herbs and conventional drugs: overview of the clinical data. Med Princ Pract 21:404–428. Available from: https://www.karger.com/Article/FullText/334488

    Article  PubMed  Google Scholar 

  15. Lanski SL, Greenwald M, Perkins A, Simon HK (2003) Herbal therapy use in a pediatric emergency department population: expect the unexpected. Pediatrics 111(5 Pt 1):981–985

    Article  PubMed  Google Scholar 

  16. Shannon M (1997) Drug-drug interactions and the cytochrome P450 system: an update. Pediatr Emerg Care 13:350–353. Available from: https://doi.org/10.1097/00006565-199710000-00015

    Article  CAS  PubMed  Google Scholar 

  17. Cunningham RF, Israili ZH, Dayton PG (1981) Clinical pharmacokinetics of probenecid. Clin Pharmacokinet 6:135–151. Available from: https://doi.org/10.2165/00003088-198106020-00004

    Article  CAS  PubMed  Google Scholar 

  18. Goodman GA (2018) In: Brunton LL, Hilal-Dandan R, Knollmann BC (eds) Goodman & Gillman’s the pharmacological basis of therapeutics. McGraw-Hill Education, New York, USA

    Google Scholar 

  19. Weitz. Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 12e. 12th ed. Laurence LB, Goodman Gilman’s Pharmacol. Basis Ther. The McGraw-Hill Companies, Inc. New York; 2011

    Google Scholar 

  20. Mariam RR, Soha G-E, Rama S, Aziz Ramy K (2012) The PharmacoMicrobiomics portal: a database for drug-microbiome interactions. Curr Pharmacogenomics Person Med 10:195–203. Available from: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1875-6921&volume=10&issue=3&spage=195

    Article  Google Scholar 

  21. Cui Y, Paules RS (2010) Use of transcriptomics in understanding mechanisms of drug-induced toxicity. Pharmacogenomics 11:573–585. Available from: https://www.futuremedicine.com/doi/10.2217/pgs.10.37

    Article  CAS  PubMed  Google Scholar 

  22. Masubuchi N, Makino C, Murayama N (2007) Prediction of in vivo potential for metabolic activation of drugs into chemically reactive intermediate: correlation of in vitro and in vivo generation of reactive intermediates and in vitro glutathione conjugate formation in rats and humans. Chem Res Toxicol 20:455–464. Available from: https://pubs.acs.org/doi/10.1021/tx060234h

    Article  CAS  PubMed  Google Scholar 

  23. Pirmohamed M, Kitteringham NR, Kevin PB (1994) The role of active metabolites in drug toxicity. Drug Saf 11:114–144

    Article  CAS  PubMed  Google Scholar 

  24. Gurwitz JH, Field TS, Harrold LR, Rothschild J, Debellis K, Seger AC et al (2003) Incidence and preventability of adverse drug events among older persons in the ambulatory setting. J Am Med Assoc 289(9):1107–1116

    Article  Google Scholar 

  25. Taché SV, Sönnichsen A, Ashcroft DM (2011) Prevalence of adverse drug events in ambulatory care: a systematic review. Ann Pharmacother 45:977–989. Available from: http://journals.sagepub.com/doi/10.1345/aph.1P627

    Article  PubMed  Google Scholar 

  26. De Gregori S, De Gregori M, Ranzani GN, Borghesi A, Regazzi M, Stronati M (2009) Drug transporters and renal drug disposition in the newborn. J Matern Neonatal Med 22:31–37. Available from: https://doi.org/10.1080/14767050903184470

    Article  CAS  Google Scholar 

  27. Anderson GD, Lynn AM (2009) Optimizing pediatric dosing: a developmental pharmacologic approach. Pharmacotherapy 29:680–690. Available from: http://doi.wiley.com/10.1592/phco.29.6.680

    Article  CAS  PubMed  Google Scholar 

  28. Ibáñez L, López-Bermejo A, Díaz M, Marcos MV, Casano P, de Zegher F (2009) Abdominal fat partitioning and high-molecular-weight adiponectin in short children born small for gestational age. J Clin Endocrinol Metab 94:1049–1052. Available from: https://academic.oup.com/jcem/article/94/3/1049/2596993

    Article  PubMed  CAS  Google Scholar 

  29. Schoderboeck L, Adzemovic M, Nicolussi E-M, Crupinschi C, Hochmeister S, Fischer M-T et al (2009) The “window of susceptibility” for inflammation in the immature central nervous system is characterized by a leaky blood–brain barrier and the local expression of inflammatory chemokines. Neurobiol Dis 35:368–375. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0969996109001296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pellicer A, del Carmen BM, Madero R, Salas S, Quero J, Cabanas F (2009) Early systemic hypotension and vasopressor support in low birth weight infants: impact on neurodevelopment. Pediatrics 123:1369–1376. Available from: http://pediatrics.aappublications.org/cgi/doi/10.1542/peds.2008-0673

    Article  PubMed  Google Scholar 

  31. Budnitz DS, Shehab N, Kegler SR, Richards CL (2007) Medication use leading to emergency department visits for adverse drug events in older adults. Ann Intern Med 147:755. Available from: http://annals.org/article.aspx?doi=10.7326/0003-4819-147-11-200712040-00006

    Article  PubMed  Google Scholar 

  32. Jose J, Rao PG (2006) Pattern of adverse drug reactions notified by spontaneous reporting in an Indian tertiary care teaching hospital. Pharmacol Res 54:226–233. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1043661806000818

    Article  PubMed  Google Scholar 

  33. Klotz U (2009) Pharmacokinetics and drug metabolism in the elderly. Drug Metab Rev 41:67–76. Available from: http://www.tandfonline.com/doi/full/10.1080/03602530902722679

    Article  CAS  PubMed  Google Scholar 

  34. El-Eraky H, Thomas SHL (2003) Effects of sex on the pharmacokinetic and pharmacodynamic properties of quinidine. Br J Clin Pharmacol 56:198–204. Available from: http://doi.wiley.com/10.1046/j.1365-2125.2003.01865.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ofotokun I, Pomeroy C (2003) Sex differences in adverse reactions to antiretroviral drugs. Top HIV Med 11:55–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12717043

    Article  PubMed  Google Scholar 

  36. Ensom MHH (2000) Gender-based differences and menstrual cycle-related changes in specific diseases: implications for pharmacotherapy. Pharmacotherapy 20:523–539. Available from: http://doi.wiley.com/10.1592/phco.20.6.523.35161

    Article  CAS  PubMed  Google Scholar 

  37. Shakya R, Rao BS, Shrestha B (2004) Incidence of hepatotoxicity due to Antitubercular medicines and assessment of risk factors. Ann Pharmacother 38:1074–1079. Available from: http://journals.sagepub.com/doi/10.1345/aph.1D525

    Article  CAS  PubMed  Google Scholar 

  38. Duncombe D, Wertheim EH, Skouteris H, Paxton SJ, Kelly L (2008) How well do women adapt to changes in their body size and shape across the course of pregnancy? J Health Psychol 13:503–515. Available from: http://journals.sagepub.com/doi/10.1177/1359105308088521

    Article  PubMed  Google Scholar 

  39. Alomar MJ, Strauch CC (2010) A prospective evaluation of antihypertensive medications safety and efficacy in United Arab Emirates private hospitals. Am J Pharmacol Toxicol 5:89–94. Available from: http://www.thescipub.com/abstract/10.3844/ajptsp.2010.89.94

    Article  Google Scholar 

  40. Brundage SC (2002) Preconception health care. Am Fam Physician United States 65:2507–2514

    Google Scholar 

  41. Holmes LB, Harvey EA, Coull BA, Huntington KB, Khoshbin S, Hayes AM et al (2001) The teratogenicity of anticonvulsant drugs. N Engl J Med 344:1132–1138. Available from: http://www.nejm.org/doi/abs/10.1056/NEJM200104123441504

    Article  CAS  PubMed  Google Scholar 

  42. Dreisbach AW, Lertora JJL (2008) The effect of chronic renal failure on drug metabolism and transport. Expert Opin Drug Metab Toxicol 4:1065–1074. Available from: http://www.tandfonline.com/doi/full/10.1517/17425255.4.8.1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Harboe T, Johansson SGO, Florvaag E, Öman H (2007) Pholcodine exposure raises serum IgE in patients with previous anaphylaxis to neuromuscular blocking agents. Allergy 62:1445–1450. Available from: http://doi.wiley.com/10.1111/j.1398-9995.2007.01554.x

    Article  CAS  PubMed  Google Scholar 

  44. Ebert LM, Schaerli P, Moser B (2005) Chemokine-mediated control of T cell traffic in lymphoid and peripheral tissues. Mol Immunol 42:799–809. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0161589004004110

    Article  CAS  PubMed  Google Scholar 

  45. Raja K, Patrick M, Elder JT, Tsoi LC (2017) Machine learning workflow to enhance predictions of adverse drug reactions (ADRs) through drug-gene interactions: application to drugs for cutaneous diseases. Sci Rep 7:3690. Available from: http://www.nature.com/articles/s41598-017-03914-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Bodenreider O (2004) The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res 32:D267–D270. Available from: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkh061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wishart DS (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34:D668–D672. Available from: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkj067

    Article  CAS  PubMed  Google Scholar 

  48. Hewett M (2002) PharmGKB: the pharmacogenetics Knowledge Base. Nucleic Acids Res 30:163–165. Available from: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/30.1.163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Torii M, Wagholikar K, Liu H (2011) Using machine learning for concept extraction on clinical documents from multiple data sources. J Am Med Informatics Assoc 18:580–587

    Article  Google Scholar 

  50. Sui M, Cui L (2017) Constructing a gene-drug-adverse reactions network and inferring potential gene-adverse reactions associations using a text mining approach. Stud Health Technol Inform 245:531–535. Available from: http://europepmc.org/abstract/MED/29295151

    PubMed  Google Scholar 

  51. Kim HH, Rhew K (2017) Analysis of adverse drug reaction reports using text mining. Korean J Clin Pharm 27:221–227. Available from: http:///journal/view.html?doi=10.24304/kjcp.2017.27.4.221

    Article  Google Scholar 

  52. Hur J, Özgür A, He Y (2018) Ontology-based literature mining and class effect analysis of adverse drug reactions associated with neuropathy-inducing drugs. J Biomed Semantics 9:17. Available from: https://jbiomedsem.biomedcentral.com/articles/10.1186/s13326-018-0185-x

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dong J, Wang N-N, Yao Z-J, Zhang L, Cheng Y, Ouyang D et al (2018) ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J Cheminform 10:29. Available from: https://doi.org/10.1186/s13321-018-0283-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Davis AP, Grondin CJ, Lennon-Hopkins K, Saraceni-Richards C, Sciaky D, King BL et al (2015) The comparative Toxicogenomics Database’s 10th year anniversary: update 2015. Nucleic Acids Res 43:D914–D920

    Article  CAS  PubMed  Google Scholar 

  55. Segura-Bedmar I, Martínez P, Herrero-Zazo M (2014) Lessons learnt from the DDIExtraction-2013 shared task. J Biomed Inform 51:152–164. Available from: https://www.sciencedirect.com/science/article/pii/S1532046414001245

    Article  PubMed  Google Scholar 

  56. Herrero-Zazo M, Segura-Bedmar I, Martínez P, Declerck T (2013) The DDI corpus: an annotated corpus with pharmacological substances and drug–drug interactions. J Biomed Inform 46:914–920. Available from: http://www.sciencedirect.com/science/article/pii/S1532046413001123

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shukkoor, M.S.A., Baharuldin, M.T.H., Raja, K. (2022). A Text Mining Protocol for Extracting Drug–Drug Interaction and Adverse Drug Reactions Specific to Patient Population, Pharmacokinetics, Pharmacodynamics, and Disease. In: Raja, K. (eds) Biomedical Text Mining. Methods in Molecular Biology, vol 2496. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2305-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2305-3_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2304-6

  • Online ISBN: 978-1-0716-2305-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics