Skip to main content

Etiolated Hypocotyls: A New System to Study the Impact of Abiotic Stress on Cell Expansion

  • Protocol
  • First Online:
Environmental Responses in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2494))

  • 1155 Accesses

Abstract

Abiotic stress impacts a wide range of plant developmental processes. Among them, cell expansion is particularly important given its contribution to plant growth and morphogenesis. Here, we describe a new phenotypic system to quantify accurately the impact of different sources of abiotic stress on the cell’s capacity to expand. This approach monitors hypocotyl growth in Arabidopsis thaliana etiolated seedlings, as in the dark this embryonic organ is known to grow solely by expanding its cells, without cell division.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vishwakarma K, Upadhyay N, Kumar N et al (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161

    PubMed  PubMed Central  Google Scholar 

  2. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  CAS  Google Scholar 

  3. Zhu J-K (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  CAS  Google Scholar 

  4. Fujii H, Verslues PE, Zhu J-K (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19:485–494

    Article  CAS  Google Scholar 

  5. Mustilli A-C, Merlot S, Vavasseur A et al (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099

    Article  CAS  Google Scholar 

  6. Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant 61:377–383

    Article  CAS  Google Scholar 

  7. Ma Y, Szostkiewicz I, Korte A et al (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068

    Article  CAS  Google Scholar 

  8. Park S-Y, Fung P, Nishimura N et al (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    Article  CAS  Google Scholar 

  9. Umezawa T, Sugiyama N, Mizoguchi M et al (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci 106:17588–17593

    Article  CAS  Google Scholar 

  10. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  Google Scholar 

  11. Finkelstein RR (1994) Mutations at two new Arabidopsis ABA response loci are similar to the abi3 mutations. Plant J 5:765–771

    Article  Google Scholar 

  12. Finkelstein R (2013) Abscisic acid synthesis and response. Arabidopsis Book 11:e0166

    Article  Google Scholar 

  13. Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14(Suppl):S15–S45

    Article  CAS  Google Scholar 

  14. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  CAS  Google Scholar 

  15. Wolf S, Hématy K, Höfte H (2012) Growth control and cell wall signaling in plants. Annu Rev Plant Biol 63:381–407

    Article  CAS  Google Scholar 

  16. Carpita NC, McCann MC (2015) Characterizing visible and invisible cell wall mutant phenotypes. J Exp Bot 66:4145–4163

    Article  CAS  Google Scholar 

  17. Höfte H, Voxeur A (2017) Plant cell walls. Curr Biol 27:865–870

    Article  Google Scholar 

  18. Hayashi Y, Takahashi K, Inoue S, Kinoshita T (2014) Abscisic acid suppresses hypocotyl elongation by dephosphorylating plasma membrane H+-ATPase in Arabidopsis thaliana. Plant Cell Physiol 55:845–853

    Article  CAS  Google Scholar 

  19. Hager A (2003) Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. J Plant Res 116:483–505

    Article  CAS  Google Scholar 

  20. Gendreau E, Traas J, Desnos T et al (1997) Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol 114:295–305

    Article  CAS  Google Scholar 

  21. Boron AK, Vissenberg K (2014) The Arabidopsis thaliana hypocotyl, a model to identify and study control mechanisms of cellular expansion. Plant Cell Rep 33:697–706

    Article  CAS  Google Scholar 

  22. Claeys H, Van Landeghem S, Dubois M et al (2014) What is stress? Dose-response effects in commonly used in vitro stress assays. Plant Physiol 165:519–527

    Article  CAS  Google Scholar 

  23. Withrow RB, Price L (1957) A darkroom safelight for research in plant physiology. Plant Physiol 32:244–248

    Article  CAS  Google Scholar 

Download references

Acknowledgments

G.M. was supported by an EMBO Long-Term Fellowship (ALTF 1576-2016) and a Marie Skłodowska-Curie Individual Postdoctoral Fellowship (EU project 750469). Work in our lab is funded by Fundação para a Ciência e a Tecnologia (FCT) through grants PTDC/BIA-FBT/31018/2017 and PTDC/BIA-BID/30608/2017. Funding from the research unit GREEN-it “Bioresources for Sustainability” (UIDB/04551/2020) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Duque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Martín, G., Duque, P. (2022). Etiolated Hypocotyls: A New System to Study the Impact of Abiotic Stress on Cell Expansion. In: Duque, P., Szakonyi, D. (eds) Environmental Responses in Plants. Methods in Molecular Biology, vol 2494. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2297-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2297-1_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2296-4

  • Online ISBN: 978-1-0716-2297-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics