Skip to main content

Analysis of Plant Root Gravitropism

  • Protocol
  • First Online:
Environmental Responses in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2494))

  • 1292 Accesses

Abstract

Gravity is a powerful element in shaping plant development, with gravitropism, the oriented growth response of plant organs to the direction of gravity, leading to each plant’s characteristic form both above and below ground. Despite being conceptually simple to follow, monitoring a plant’s directional growth responses can become complex as variation arises from both internal developmental cues as well as effects of the environment. In this protocol, we discuss approaches to gravitropism assays, focusing on automated analyses of root responses. For Arabidopsis, we recommend a simple 90° rotation using seedlings that are 5–8 days old. If images are taken at regular intervals and the environmental metadata is recorded during both seedling development and gravitropic assay, these data can be used to reveal quantitative kinetic patterns at distinct stages of the assay. The use of software that analyzes root system parameters and stores this data in the RSML format opens up the possibility for a host of root parameters to be extracted to characterize growth of the primary root and a range of lateral root phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guyomarc’h S, Léran S, Auzon-Cape M et al (2012) Early development and gravitropic response of lateral roots in Arabidopsis thaliana. Philos Trans R Soc B Biol Sci 367:1509–1516. https://doi.org/10.1098/rstb.2011.0231

    Article  CAS  Google Scholar 

  2. Kiss JZ, Miller KM, Ogden LA, Roth KK (2002) Phototropism and gravitropism in lateral roots of Arabidopsis. Plant Cell Physiol 43:35–43. https://doi.org/10.1093/pcp/pcf017

    Article  CAS  PubMed  Google Scholar 

  3. Digby J, Firn RD (1995) The gravitropic set-point angle (GSA): the identification of an important developmentally controlled variable governing plant architecture. Plant Cell Environ 18:1434–1440. https://doi.org/10.1111/j.1365-3040.1995.tb00205.x

    Article  CAS  PubMed  Google Scholar 

  4. Nakamura M, Nishimura T, Morita MT (2019) Bridging the gap between amyloplasts and directional auxin transport in plant gravitropism. Curr Opin Plant Biol 52:54–60. https://doi.org/10.1016/j.pbi.2019.07.005

    Article  CAS  PubMed  Google Scholar 

  5. Su S-H, Gibbs NM, Jancewicz AL, Masson PH (2017) Molecular mechanisms of root gravitropism. Curr Biol 27:R964–R972. https://doi.org/10.1016/j.cub.2017.07.015

    Article  CAS  PubMed  Google Scholar 

  6. Correll MJ, Kiss JZ (2002) Interactions between gravitropism and phototropism in plants. J Plant Growth Regul 21:89–101. https://doi.org/10.1007/s003440010056

    Article  CAS  PubMed  Google Scholar 

  7. Ingram PA, Malamy JE (2010) Root system architecture. Adv Bot Res 55:75–117. https://doi.org/10.1016/B978-0-12-380868-4.00002-8

    Article  CAS  Google Scholar 

  8. Band LR, Wells DM, Larrieu A et al (2012) Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proc Natl Acad Sci U S A 109:4668–4673. https://doi.org/10.1073/pnas.1201498109

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gehan MA, Fahlgren N, Abbasi A et al (2017) PlantCV v2: Image analysis software for high-throughput plant phenotyping. PeerJ 2017. https://doi.org/10.7717/peerj.4088

  10. French A, Ubeda-Tomás S, Holman TJ et al (2009) High-throughput quantification of root growth using a novel image-analysis tool. Plant Physiol 150:1784–1795. https://doi.org/10.1104/pp.109.140558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Delory BM, Li M, Topp CN, Lobet G (2018) archiDART v3.0: A new data analysis pipeline allowing the topological analysis of plant root systems. F1000Research 7:22. https://doi.org/10.12688/f1000research.13541.1

    Article  Google Scholar 

  12. Schindelin J, Arganda-Carreras I, Frise E et al (2012) FIJI: an open-source platform for biomedical image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  13. Lobet G, Pagès L, Draye X (2011) A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol 157:29–39. https://doi.org/10.1104/pp.111.179895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pound MP, French AP, Atkinson JA et al (2013) RootNav: navigating images of complex root architectures. Plant Physiol 162:1802–1814. https://doi.org/10.1104/pp.113.221531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lobet G, Pound MP, Diener J et al (2015) Root system markup language: toward a unified root architecture description language. Plant Physiol 167:617–627. https://doi.org/10.1104/pp.114.253625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Merchant N, Lyons E, Goff S et al (2016) The iPlant collaborative: cyberinfrastructure for enabling data to discovery for the life sciences. PLoS Biol 14:e1002342. https://doi.org/10.1371/journal.pbio.1002342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Massa GD, Gilroy S (2003) Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana. Plant J 33:435–445. https://doi.org/10.1046/j.1365-313X.2003.01637.x

    Article  PubMed  Google Scholar 

  18. Yasrab R, Atkinson JA, Wells DM et al (2019) RootNav 2.0: deep learning for automatic navigation of complex plant root architectures. Gigascience 8:giz123. https://doi.org/10.1093/gigascience/giz123

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work is supported by NASA 80NSSC19K0126, 80NSSC21K0577 and NSF MCB2016177.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Gilroy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barker, R., Johns, S., Trane, R., Gilroy, S. (2022). Analysis of Plant Root Gravitropism . In: Duque, P., Szakonyi, D. (eds) Environmental Responses in Plants. Methods in Molecular Biology, vol 2494. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2297-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2297-1_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2296-4

  • Online ISBN: 978-1-0716-2297-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics