Skip to main content

An hiPSC-Derived In Vitro Model of the Blood–Brain Barrier

  • Protocol
  • First Online:
The Blood-Brain Barrier

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2492))

  • 1639 Accesses

Abstract

Human induced pluripotent stem cells (hiPSC) offer a tractable system to model the blood–brain barrier (BBB). Here we detail the assembly of a triple co-culture hiPSC-BBB model, using hiPSC-derived brain microvascular endothelial cells (BMEC), astrocytes, and mural cells (MC). Transendothelial electrical resistance (TEER) and sodium fluorescein (NaFl) permeability can be used to test the barrier properties. The model has applications in studying BBB-related pathology and for drug screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  Google Scholar 

  2. Naik P, Cucullo L (2012) In vitro blood-brain barrier models: Current and perspective technologies [Internet]. J Pharm Sci. [cited 2017 Oct 23] 101:1337–1354. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3288147/pdf/nihms352244.pdf.

  3. Shi Y, Kirwan P, Livesey FJ (2012) Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc [Internet]. [cited 2017 Nov 21] 7(10):1836–1846. Available from: http://www.nature.com/doifinder/10.1038/nprot.2012.116

  4. Serrano F, Bernard WG, Granata A et al (2019) A novel human pluripotent stem cell-derived neural crest model of Treacher Collins syndrome shows defects in cell death and migration. Stem Cells Dev [Internet]. [cited 2020 Mar 2] 28(2). Available from: www.liebertpub.com/scd

  5. Oberheim NA, Takano T, Han X et al (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29(10):3276–3287

    Article  CAS  Google Scholar 

  6. Chamberlain SJ (2016) Disease modelling using human iPSCs Introduction to iPSC Technology. Hum Mol Genet [Internet]. [cited 2020 May 22] 25(R2). Available from: https://academic.oup.com/hmg/article-abstract/25/R2/R173/2198192

  7. Kelleher J, Dickinson A, Cain S et al (2019) Patient-specific iPSC model of a genetic vascular dementia syndrome reveals failure of mural cells to stabilize capillary structures. Stem Cell Rep 13(5):817–831

    Article  CAS  Google Scholar 

  8. Ling C, Liu Z, Song M et al (2019) Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells. Protein Cell [Internet]. [cited 2019 Mar 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30778920

  9. Lim RG, Quan C, Reyes-Ortiz AM et al (2017) Huntington’s disease iPSC-derived brain microvascular endothelial cells reveal WNT-mediated angiogenic and blood-brain barrier deficits. Cell Rep [Internet]. [cited 2018 Apr 12] 19(7):1365–1377. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2211124717304965

  10. Le Roux G, Jarray R, Guyot A-C et al (2019) Proof-of-concept study of drug brain permeability between in vivo human brain and an in vitro iPSCs-human blood-brain barrier model. Sci Rep [Internet]. [cited 2019 Nov 12] 9. Available from: https://doi.org/10.1038/s41598-019-52213-6

  11. Bhalerao A, Sivandzade F, Rahman Archie S et al (2020) In vitro modeling of the neurovascular unit: advances in the field. Fluids Barriers CNS [Internet]. [cited 2020 May 11] 17:22. Available from: https://doi.org/10.1186/s12987-020-00183-7

  12. Benson K, Cramer S, Galla HJ (2013) Impedance-based cell monitoring: barrier properties and beyond. Fluids Barriers CNS 10:1–11

    Article  Google Scholar 

  13. Srinivasan B, Kolli AR, Esch MB et al (2015) TEER measurement techniques for in vitro barrier model systems [Internet]. J Lab Autom. [cited 2018 Feb 16] 20:107–126. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25586998

  14. Helms HC, Abbott NJ, Burek M, et al (2016) In vitro models of the blood–brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab [Internet]. [cited 2018 Apr 9] 36(5):862–890. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26868179

  15. Canfield SG, Stebbins MJ, Morales BS et al (2017) An isogenic blood-brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells. J Neurochem [Internet]. [cited 2017 Nov 3] 140(6):874–888. Available from: http://doi.wiley.com/10.1111/jnc.13923

  16. Canfield SG, Stebbins MJ, Faubion MG et al (2019) An isogenic neurovascular unit model comprised of human induced pluripotent stem cell-derived brain microvascular endothelial cells, pericytes, astrocytes, and neurons. Fluids Barriers CNS [Internet]. [cited 2020 Nov 17] 16(1):25. Available from: https://fluidsbarrierscns.biomedcentral.com/articles/10.1186/s12987-019-0145-6

  17. Neal EH, Marinelli NA, Shi Y et al (2019) A simplified, fully defined differentiation scheme for producing blood-brain barrier endothelial cells from human iPSCs. [cited 2019 Nov 23]. Available from: https://doi.org/10.1016/j.stemcr.2019.05.008

  18. Cheung C, Bernardo AS, Trotter MWB et al (2012) Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility. Nat Biotechnol 30(2):165–173

    Article  CAS  Google Scholar 

  19. Shaltouki A, Peng J, Liu Q et al (2013) Efficient generation of astrocytes from human pluripotent stem cells in defined conditions. Stem Cells [Internet]. [cited 2017 Oct 24] 31(5):941–952. Available from: http://onlinelibrary.wiley.com/doi/10.1002/stem.1334/abstract

  20. Stebbins MJ, Wilson HK, Canfield SG et al (2016) Differentiation and characterization of human pluripotent stem cell-derived brain microvascular endothelial cells. Methods 101:93–102

    Article  CAS  Google Scholar 

  21. Hollmann EK, Bailey AK, Potharazu AV et al (2017) Accelerated differentiation of human induced pluripotent stem cells to blood–brain barrier endothelial cells. Fluids Barriers CNS [Internet] 14(1):9. Available from: http://fluidsbarrierscns.biomedcentral.com/articles/10.1186/s12987-017-0059-0

Download references

Acknowledgements

This work was supported by the Rosetrees Trust, British Heart Foundation, Alzheimer’s Association and Stroke Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Goodwin-Trotman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Goodwin-Trotman, M., Patel, K., Granata, A. (2022). An hiPSC-Derived In Vitro Model of the Blood–Brain Barrier. In: Stone, N. (eds) The Blood-Brain Barrier. Methods in Molecular Biology, vol 2492. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2289-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2289-6_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2288-9

  • Online ISBN: 978-1-0716-2289-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics