Skip to main content

Integrating Primary Astrocytes in a Microfluidic Model of the Blood–Brain Barrier

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2492))

Abstract

An in vitro blood–brain barrier (BBB) model must be highly reproducible and imitate as much as possible the properties of the in vivo environment, from both the functional and anatomical point of view. In our latest work, a BBB prototype was implemented through the use of human primary brain cells and then integrated in a microfluidic platform (Lauranzano et al., Adv Biosyst 3:e1800335, 2019). Here we describe, step by step, the setting of a customized bio-mimetic platform, which uses human brain endothelial cells and primary astrocytic cells to allow the study of the complex interactions between the immune system and the brain in healthy and neuroinflammatory conditions. The model can be exploited to investigate the neuroimmune communication at the blood–brain interface and to examine the transmigration of patient-derived lymphocytes in order to envisage cutting-edge strategies to restore barrier integrity and block the immune cell influx into the CNS.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kacem K, Lacombe P, Seylaz J, Bonvento G (1998) Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study. Glia 23:1–10. https://doi.org/10.1002/(SICI)1098-1136(199805)23:1<1::AID-GLIA1>3.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  2. Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58:1094–1103. https://doi.org/10.1002/glia.20990

    Article  PubMed  Google Scholar 

  3. Furtado GC, Piña B, Tacke F et al (2006) A novel model of demyelinating encephalomyelitis induced by monocytes and dendritic cells. J Immunol 177:6871–6879. https://doi.org/10.4049/jimmunol.177.10.6871

    Article  CAS  PubMed  Google Scholar 

  4. Herting CJ, Chen Z, Maximov V et al (2019) Tumour-associated macrophage-derived interleukin-1 mediates glioblastoma-associated cerebral oedema. Brain 142:3834–3851. https://doi.org/10.1093/brain/awz331

    Article  PubMed  PubMed Central  Google Scholar 

  5. Codarri L, Gyülvészi G, Tosevski V et al (2011) RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 12:560–567. https://doi.org/10.1038/ni.2027

    Article  CAS  PubMed  Google Scholar 

  6. Holman DW, Klein RS, Ransohoff RM (2011) The blood–brain barrier, chemokines and multiple sclerosis. Biochim Biophys Acta Mol basis Dis 1812:220–230. https://doi.org/10.1016/j.bbadis.2010.07.019

    Article  CAS  Google Scholar 

  7. Latorre D, Kallweit U, Armentani E et al (2018) T cells in patients with narcolepsy target self-antigens of hypocretin neurons. Nature 562:63–68. https://doi.org/10.1038/s41586-018-0540-1

    Article  CAS  PubMed  Google Scholar 

  8. Brochard V, Combadière B, Prigent A et al (2009) Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 119:182–192. https://doi.org/10.1172/JCI36470

    Article  CAS  PubMed  Google Scholar 

  9. Baruch K, Rosenzweig N, Kertser A et al (2015) Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer’s disease pathology. Nat Commun 6:7967. https://doi.org/10.1038/ncomms8967

    Article  CAS  PubMed  Google Scholar 

  10. Dansokho C, Ait Ahmed D, Aid S et al (2016) Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain 139:1237–1251. https://doi.org/10.1093/brain/awv408

    Article  PubMed  Google Scholar 

  11. Ito M, Komai K, Mise-Omata S et al (2019) Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565:246–250. https://doi.org/10.1038/s41586-018-0824-5

    Article  CAS  PubMed  Google Scholar 

  12. Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain-barrier. Nat Methods 19:1584–1596. https://doi.org/10.1038/nm.3407.Development

    Article  CAS  Google Scholar 

  13. Allen NJ, Barres BA (2009) Glia—more than just brain glue. Nature 457:675–677. https://doi.org/10.1038/457675a

    Article  CAS  PubMed  Google Scholar 

  14. Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14:311–321. https://doi.org/10.1038/nrn3484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Molofsky AV, Krenick R, Ullian E et al (2012) Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 26:891–907. https://doi.org/10.1101/gad.188326.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khakh BS, McCarthy KD (2015) Astrocyte calcium signaling: from observations to functions and the challenges therein. Cold Spring Harb Perspect Biol 7:a020404. https://doi.org/10.1101/cshperspect.a020404

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lee J-H, Kim J, Noh S et al (2021) Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis. Nature 590:612–617. https://doi.org/10.1038/s41586-020-03060-3

    Article  CAS  PubMed  Google Scholar 

  18. Fossati G, Matteoli M, Menna E (2020) Astrocytic factors controlling synaptogenesis: a team play. Cell 9:2173. https://doi.org/10.3390/cells9102173

    Article  CAS  Google Scholar 

  19. Liddelow SA, Barres BA (2017) Reactive astrocytes: production, function, and therapeutic potential. Immunity 46:957–967. https://doi.org/10.1016/j.immuni.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  20. Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53. https://doi.org/10.1038/nrn1824

    Article  CAS  PubMed  Google Scholar 

  21. Heithoff BP, George KK, Phares AN et al (2021) Astrocytes are necessary for blood–brain barrier maintenance in the adult mouse brain. Glia 69:436–472. https://doi.org/10.1002/glia.23908

    Article  CAS  PubMed  Google Scholar 

  22. Liu C-Y, Yang Y, Ju W-N et al (2018) Emerging roles of astrocytes in neuro-vascular unit and the tripartite synapse with emphasis on reactive gliosis in the context of Alzheimer’s disease. Front Cell Neurosci 12:193

    Article  Google Scholar 

  23. Michinaga S, Koyama Y (2019) Dual roles of astrocyte-derived factors in regulation of blood-brain barrier function after brain damage. Int J Mol Sci 20:1–22. https://doi.org/10.3390/ijms20030571

    Article  CAS  Google Scholar 

  24. Zhang Y, Sloan SA, Clarke LE et al (2017) Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89:37–53. https://doi.org/10.1016/j.neuron.2015.11.013

    Article  CAS  Google Scholar 

  25. Lauranzano E, Campo E, Rasile M et al (2019) A microfluidic human model of blood–brain barrier employing primary human astrocytes. Adv Biosyst 3:e1800335. https://doi.org/10.1002/adbi.201800335

    Article  PubMed  Google Scholar 

  26. Guttenplan KA, Liddelow SA (2018) Astrocytes and microglia: models and tools. J Exp Med 216:71–83. https://doi.org/10.1084/jem.20180200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Humanitas Neuro Center neurosurgeons for providing brain tissues and Pardi’s Lab (San Raffaele Hospital) for the NVU microfluidic integration. This work was supported by the Ministero della Salute (Grant No. GR-2018-12367117 and GR-2019-12370776) to E.L and by Fondazione Italiana Sclerosi Multipla (grant FISM 2019/R-Single/032) to M.M. Illustrations were created with BioRender (©BioRender: biorender.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliana Lauranzano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lauranzano, E., Rasile, M., Matteoli, M. (2022). Integrating Primary Astrocytes in a Microfluidic Model of the Blood–Brain Barrier. In: Stone, N. (eds) The Blood-Brain Barrier. Methods in Molecular Biology, vol 2492. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2289-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2289-6_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2288-9

  • Online ISBN: 978-1-0716-2289-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics