Skip to main content

Site-wise Diversification of Combinatorial Libraries Using Insights from Structure-guided Stability Calculations

  • Protocol
  • First Online:
Yeast Surface Display

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2491))

Abstract

Many auspicious clinical and industrial accomplishments have improved the human condition by means of protein engineering. Despite these achievements, our incomplete understanding of the sequence–structure–function relationship prevents rapid innovation. To tackle this problem, we must develop and integrate new and existing technologies. To date, directed evolution and rational design have dominated as protein engineering principles. Even so, prior to screening for novel or improved functions, a large collection of variants, within a protein library, exist along an ambiguous mutational terrain. Complicating things further, the choice of where to initialize investigation along a vast sequence space becomes even more difficult given that the majority of any sequence lacks function entirely. Unfortunately, even when considering functionally relevant positions, random substitutions can prove to be destabilizing, causing a hindrance to an otherwise function-inducing, stability-reliant folding process. To enhance productivity in the field, we seek to address this issue of destabilization, and subsequent disfunction, at protein–protein and protein–ligand interacting regions. Herein, the process of choosing amenable positions – and amino acids at those positions – allows for a refined, knowledge-based approach to combinatorial library design. Using structural data, we perform computational stability prediction with FoldX’s PositionScan and Rosetta’s ddG_monomer in tandem, allowing for the refinement of our thermodynamic stability data through the comparison of results. In turn, we provide a process for selecting in silico predicted mutually stabilizing positions and avoiding overly destabilizing ones that guides the site-wise diversification of combinatorial libraries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baase WA, Liu L, Tronrud DE et al (2010) Lessons from the lysozyme of phage T4. Protein Sci 19:631–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kellogg EH, Leaver-Fay A, Baker D (2011) Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins 79:830–838

    Article  CAS  PubMed  Google Scholar 

  3. Park H, Bradley P, Greisen P et al (2016) Simultaneous optimization of biomolecular energy functions on features from small molecules and macromolecules. J Chem Theory Comput 12:6201–6212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Delgado J, Radusky LG, Cianferoni D et al (2019) FoldX 5.0: working with RNA, small molecules and a new graphical interface. Bioinformatics 35:4168–4169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Davey JA, Chica RA (2015) Optimization of rotamers prior to template minimization improves stability predictions made by computational protein design. Protein Sci 24:545–560

    Article  CAS  PubMed  Google Scholar 

  6. Buß O, Rudat J, Ochsenreither K (2018) FoldX as protein engineering tool: better than random based approaches? Comput Struct Biotechnol J 16:25–33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Hou T, Wang J, Li Y et al (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82

    Article  CAS  PubMed  Google Scholar 

  8. Tokuriki N, Stricher F, Serrano L et al (2008) How protein stability and new functions trade off. PLoS Comput Biol 4:e1000002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Naganathan AN (2019) Modulation of allosteric coupling by mutations: from protein dynamics and packing to altered native ensembles and function. Curr Opin Struct Biol 54:1–9

    Article  CAS  PubMed  Google Scholar 

  10. Pohorille A, Jarzynski C, Chipot C (2010) Good practices in free-energy calculations. J Phys Chem B 114:10235–10253

    Article  CAS  PubMed  Google Scholar 

  11. Klimovich PV, Shirts MR, Mobley DL (2015) Guidelines for the analysis of free energy calculations. J Comput Aided Mol Des 29:397–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Strokach A, Corbi-Verge C, Kim PM (2019) Predicting changes in protein stability caused by mutation using sequence-and structure-based methods in a CAGI5 blind challenge. Hum Mutat 40:1414–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mazurenko S (2020) Predicting protein stability and solubility changes upon mutations: data perspective. ChemCatChem 12:5590–5598

    Article  CAS  Google Scholar 

  14. Beauchamp KA, Lin YS, Das R et al (2012) Are protein force fields getting better? A systematic benchmark on 524 diverse NMR measurements. J Chem Theory Comput 8:1409–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pucci F, Bernaerts KV, Kwasigroch JM et al (2018) Quantification of biases in predictions of protein stability changes upon mutations. Bioinformatics 34:3659–3665

    Article  CAS  PubMed  Google Scholar 

  16. Thiltgen G, Goldstein RA (2012) Assessing predictors of changes in protein stability upon mutation using self-consistency. PLoS One 7:46084

    Article  CAS  Google Scholar 

  17. Huang P, Chu SKS, Frizzo HN et al (2020) Evaluating protein engineering thermostability prediction tools using an independently generated dataset. ACS Omega 5:6487–6493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kumar V, Rahman S, Choudhry H et al (2017) Computing disease-linked SOD1 mutations: deciphering protein stability and patient-phenotype relations article. Sci Rep 7:1–13

    CAS  Google Scholar 

  19. Nisthal A, Wang CY, Ary ML et al (2019) Protein stability engineering insights revealed by domain-wide comprehensive mutagenesis. Proc Natl Acad Sci U S A 116:16367–16377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Adolf-Bryfogle J, Teets FD, Bahl CD (2021) Toward complete rational control over protein structure and function through computational design. Curr Opin Struct Biol 66:170–177

    Article  CAS  PubMed  Google Scholar 

  21. Sun J, Cui Y, Wu B (2021) GRAPE, a greedy accumulated strategy for computational protein engineering. In: Methods in enzymology. Academic, pp 207–230

    Google Scholar 

  22. Soni S (2021) Trends in lipase engineering for enhanced biocatalysis. Biotechnol Appl Biochem 59:13204–13231

    Google Scholar 

  23. Van DJ, Delgado J, Stricher F et al (2011) A graphical interface for the FoldX forcefield. Bioinformatics 27:1711–1712

    Article  CAS  Google Scholar 

  24. Khan S, Vihinen M (2010) Performance of protein stability predictors. Hum Mutat 31:675–684

    Article  CAS  PubMed  Google Scholar 

  25. Potapov V, Cohen M, Schreiber G (2009) Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details. Protein Eng Des Sel 22:553–560

    Article  CAS  PubMed  Google Scholar 

  26. Woldring DR, Holec PV, Zhou H et al (2015) High-throughput ligand discovery reveals a sitewise gradient of diversity in broadly evolved hydrophilic fibronectin domains. PLoS One 10:e0138956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Woldring DR, Holec PV, Stern LA et al (2017) A gradient of sitewise diversity promotes evolutionary fitness for binder discovery in a three-helix bundle protein scaffold. Biochemistry 56:1656–1671

    Article  CAS  PubMed  Google Scholar 

  28. Kruziki MA, Bhatnagar S, Woldring DR et al (2015) A 45-amino-acid scaffold mined from the PDB for high-affinity ligand engineering. Chem Biol 22:946–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kruziki MA, Sarma V, Hackel BJ (2018) Constrained combinatorial libraries of Gp2 proteins enhance discovery of PD-L1 binders. ACS Comb Sci 20:423–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bryksin AV, Matsumura I (2010) Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. BioTechniques 48:463–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schimming O, Fleischhacker F, Nollmann FI et al (2014) Yeast homologous recombination cloning leading to the novel peptides ambactin and xenolindicin. Chembiochem 15:1290–1294

    Article  CAS  PubMed  Google Scholar 

  32. An Y, Ji J, Wu W et al (2005) A rapid and efficient method for multiple-site mutagenesis with a modified overlap extension PCR. Appl Microbiol Biotechnol 68:774–778

    Article  CAS  PubMed  Google Scholar 

  33. Chao G, Lau WL, Hackel BJ et al (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1:755–768

    Article  CAS  PubMed  Google Scholar 

  34. Benatuil L, Perez JM, Belk J et al (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel 23:155–159

    Article  CAS  PubMed  Google Scholar 

  35. Bednar D, Beerens K, Sebestova E et al (2015) FireProt: energy- and evolution-based computational design of thermostable multiple-point mutants. PLoS Comput Biol 11:e1004556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Dehouck Y, Kwasigroch JM, Gilis D et al (2011) PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality. BMC Bioinformatics 12:151

    Article  PubMed  PubMed Central  Google Scholar 

  37. Witvliet DK, Strokach A, Giraldo-Forero AF et al (2016) ELASPIC web-server: proteome-wide structure-based prediction of mutation effects on protein stability and binding affinity. Bioinformatics 32:1589–1591

    Article  CAS  PubMed  Google Scholar 

  38. Pires DEV, Ascher DB, Blundell TL (2014) DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res 42:W314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sumbalova L, Stourac J, Martinek T et al (2018) HotSpot Wizard 3.0: web server for automated design of mutations and smart libraries based on sequence input information. Nucleic Acids Res 46:W356–W362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wijma HJ, Fürst MJLJ, Janssen DB (2018) A computational library design protocol for rapid improvement of protein stability: FRESCO. In: Methods in molecular biology. Humana Press, pp 69–85

    Google Scholar 

  41. Alford RF, Leaver-Fay A, Jeliazkov JR et al (2017) The rosetta all-atom energy function for macromolecular modeling and design. J Chem Theory Comput 13:3031–3048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jacobs TM, Yumerefendi H, Kuhlman B et al (2015) SwiftLib: rapid degenerate-codon-library optimization through dynamic programming. Nucleic Acids Res 43:e34

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Woldring .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dolgikh, B., Woldring, D. (2022). Site-wise Diversification of Combinatorial Libraries Using Insights from Structure-guided Stability Calculations. In: Traxlmayr, M.W. (eds) Yeast Surface Display. Methods in Molecular Biology, vol 2491. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2285-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2285-8_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2284-1

  • Online ISBN: 978-1-0716-2285-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics