Skip to main content

Investigating Plant Biosynthetic Pathways Using Heterologous Gene Expression: Yeast as a Heterologous Host

  • Protocol
  • First Online:
Engineering Natural Product Biosynthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2489))

Abstract

Plant natural products (PNPs) are valuable resources for the development of pharmaceuticals and agrochemicals, yet the biosynthesis and metabolism of PNPs are largely unknown. Heterologous pathway reconstitution is a heavily adopted strategy in secondary metabolism characterization. Yeast systems have been broadly utilized in the heterologous production of PNPs and have been considered as a promising platform to investigate plant biosynthetic pathways. Here, we describe the reconstitution and verification of the upstream part of brassinolide biosynthesis in S. cerevisiae using this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Osbourn AE, Lanzotti V (2009) Plant-derived natural products. Springer, Berlin

    Book  Google Scholar 

  2. Duge de Bernonville T et al (2020) Identifying missing biosynthesis enzymes of plant natural products. Trends Pharmacol Sci 41(3):142–146

    Article  CAS  Google Scholar 

  3. Lau W, Sattely ES (2015) Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science 349(6253):1224–1228

    Article  CAS  Google Scholar 

  4. Miettinen K et al (2014) The seco-iridoid pathway from Catharanthus roseus. Nat Commun 5:3606

    Article  Google Scholar 

  5. Caputi L et al (2018) Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science 360(6394):1235–1239

    Article  CAS  Google Scholar 

  6. Christ B et al (2019) Repeated evolution of cytochrome P450-mediated spiroketal steroid biosynthesis in plants. Nat Commun 10(1):3206

    Article  Google Scholar 

  7. Liu Y, Nielsen J (2019) Recent trends in metabolic engineering of microbial chemical factories. Curr Opin Biotechnol 60:188–197

    Article  CAS  Google Scholar 

  8. Pyne ME, Narcross L, Martin VJJ (2019) Engineering plant secondary metabolism in microbial systems. Plant Physiol 179(3):844–861

    Article  CAS  Google Scholar 

  9. Guerriero G et al (2018) Production of plant secondary metabolites: examples, tips and suggestions for biotechnologists. Genes (Basel) 9(6):309

    Article  Google Scholar 

  10. Cravens A, Payne J, Smolke CD (2019) Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat Commun 10(1):2142

    Article  Google Scholar 

  11. Li Y, Smolke CD (2016) Engineering biosynthesis of the anticancer alkaloid noscapine in yeast. Nat Commun 7:12137

    Article  CAS  Google Scholar 

  12. Piironen V et al (2000) Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Sci Food Agric 80(7):939–966

    Article  CAS  Google Scholar 

  13. Peres ALGL et al (2019) Brassinosteroids, the sixth class of phytohormones: a molecular view from the discovery to hormonal interactions in plant development and stress adaptation. Int J Mol Sci 20(2):331

    Article  Google Scholar 

  14. Jacobowitz JR, Weng JK (2020) Exploring uncharted territories of plant specialized metabolism in the postgenomic era. Annu Rev Plant Biol 71:631–658

    Article  CAS  Google Scholar 

  15. Kautsar SA et al (2017) plantiSMASH: automated identification, annotation and expression analysis of plant biosynthetic gene clusters. Nucleic Acids Res 45(W1):W55–W63

    Article  CAS  Google Scholar 

  16. Smolke C et al (2018) Synthetic biology: parts, devices and applications. Wiley, Hoboken

    Book  Google Scholar 

  17. Li SJ, Li YR, Smolke CD (2018) Strategies for microbial synthesis of high-value phytochemicals. Nat Chem 10(4):395–404

    Article  CAS  Google Scholar 

  18. Nielsen J (2019) Yeast systems biology: model organism and cell factory. Biotechnol J 14(9):1800421

    Article  Google Scholar 

  19. Redden H, Morse N, Alper HS (2015) The synthetic biology toolbox for tuning gene expression in yeast. FEMS Yeast Res 15(1):1–10

    Article  CAS  Google Scholar 

  20. Smanski MJ et al (2016) Synthetic biology to access and expand nature’s chemical diversity. Nat Rev Microbiol 14(3):135–149

    Article  CAS  Google Scholar 

  21. Jensen MK, Keasling JD (2015) Recent applications of synthetic biology tools for yeast metabolic engineering. FEMS Yeast Res 15(1):1–10

    Article  CAS  Google Scholar 

  22. Xu S, Chen C, Li Y (2020) Engineering of phytosterol-producing yeast platforms for functional reconstitution of downstream biosynthetic pathways. ACS Synth Biol 9(11):3157–3170

    Article  CAS  Google Scholar 

  23. van Dijken JP et al (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzym Microb Technol 26(9–10):706–714

    Article  Google Scholar 

  24. Alberti S, Gitler AD, Lindquist S (2007) A suite of gateway cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae. Yeast 24(10):913–919

    Article  CAS  Google Scholar 

  25. Gibson DG et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345

    Article  CAS  Google Scholar 

  26. Gueldener U et al (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30(6):e23

    Article  CAS  Google Scholar 

  27. Partow S et al (2010) Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27(11):955–964

    Article  CAS  Google Scholar 

  28. Peng B et al (2015) Controlling heterologous gene expression in yeast cell factories on different carbon substrates and across the diauxic shift: a comparison of yeast promoter activities. Microb Cell Factories 14:91

    Article  Google Scholar 

  29. Redden H, Alper HS (2015) The development and characterization of synthetic minimal yeast promoters. Nat Commun 6:7810

    Article  CAS  Google Scholar 

  30. Kotopka BJ, Smolke CD (2020) Model-driven generation of artificial yeast promoters. Nat Commun 11(1):2113

    Article  CAS  Google Scholar 

  31. Curran KA et al (2015) Short synthetic terminators for improved heterologous gene expression in yeast. ACS Synth Biol 4(7):824–832

    Article  CAS  Google Scholar 

  32. Wang Z et al (2019) Yeast synthetic terminators: fine regulation of strength through linker sequences. Chembiochem 20(18):2383–2389

    Article  CAS  Google Scholar 

  33. Tschumper G, Carbon J (1983) Copy number control by a yeast centromere. Gene 23(2):221–232

    Article  CAS  Google Scholar 

  34. Trenchard IJ, Smolke CD (2015) Engineering strategies for the fermentative production of plant alkaloids in yeast. Metab Eng 30:96–104

    Article  CAS  Google Scholar 

  35. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):31–34

    Article  CAS  Google Scholar 

  36. Jensen NB et al (2014) EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae. FEMS Yeast Res 14(2):238–248

    Article  CAS  Google Scholar 

  37. Sauer B (1994) Recycling selectable markers in yeast. BioTechniques 16(6):1086–1088

    CAS  PubMed  Google Scholar 

  38. Zhou Z et al (2016) Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc Natl Acad Sci 113(41):E6117–E6125

    Article  CAS  Google Scholar 

  39. Bruschi C, Gjuracic K, Tosato V (2006) Yeast artificial chromosomes. Encyclopedia of Life Sciences. ChichesterJohn Wiley & Sons Ltd

    Google Scholar 

  40. Wu S, Ma X, Zhou A, Valenzuela A, Zhou K, Li Y (2021) Establishment of strigolactone-producing bacteriumyeast consortium. Sci Adv 7:eabh4048. https://doi.org/10.1126/sciadv.abh4048

Download references

Acknowledgments

We thank Dr. Christina Smolke from Stanford University for kindly providing pCS1056, pCS2812, pCS2814 and pCS3129 as gifts. We thank Anqi Zhou and Tiffany Chiu for valuable feedback in the preparation of the manuscript. This work was supported by Cancer Research Coordinating Committee Research Award (grant to Y.L., CRN-20-634571) and NIH New Innovator Award (grant to Y.L., DP2 AT011445-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanran Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xu, S., Wu, S., Li, Y. (2022). Investigating Plant Biosynthetic Pathways Using Heterologous Gene Expression: Yeast as a Heterologous Host. In: Skellam, E. (eds) Engineering Natural Product Biosynthesis. Methods in Molecular Biology, vol 2489. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2273-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2273-5_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2272-8

  • Online ISBN: 978-1-0716-2273-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics