Skip to main content

Mechanisms and Effects of Substrate Channelling in Enzymatic Cascades

  • Protocol
  • First Online:
Multienzymatic Assemblies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2487))

Abstract

Substrate or metabolite channelling is a transfer of intermediates produced by one enzyme to the sequential enzyme of a reaction cascade or metabolic pathway, without releasing them entirely into bulk. Despite an enormous effort and more than three decades of research, substrate channelling remains the subject of continuing debates and active investigation. Herein, we review the benefits and mechanisms of substrate channelling in vivo and in vitro. We discuss critically the effects that substrate channelling can have on enzymatic cascades, including speeding up or slowing down reaction cascades and protecting intermediates from sequestration and enzymes’ surroundings from toxic or otherwise detrimental intermediates. We also discuss how macromolecular crowding affects substrate channelling and point out the galore of open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kholodenko BN, Demin OV, Westerhoff HV (1993) Channelled’ pathways can be more sensitive to specific regulatory signals. FEBS Lett 320:75–78. https://doi.org/10.1016/0014-5793(93)81661-I

    Article  CAS  PubMed  Google Scholar 

  2. Yon-Kahn J, Hervé G (2009) Mol Cell Enzymol; Springer, Berlin, Heidelberg, pp 679–722. https://doi.org/10.1007/978-3-642-01228-0_16

    Book  Google Scholar 

  3. Seelig B (2017) Multifunctional enzymes from reduced genomes model proteins for simple primordial metabolism? Mol Microbiol 105:505–507. https://doi.org/10.1111/mmi.13742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ovádi J (1991) Physiological significance of metabolic channelling. J Theor Biol 152:1–22. https://doi.org/10.1016/S0022-5193(05)80500-4

  5. Miles EW, Rhee S, Davies DR (1999) The molecular basis of substrate channeling. J Biol Chem 274:12193–12196. https://doi.org/10.1074/jbc.274.18.12193

    Article  CAS  PubMed  Google Scholar 

  6. Ovádi J, Saks V (2004) On the origin of intracellular compartmentation and organized metabolic systems. Mol Cell Biochem 256:5–12. https://doi.org/10.1023/B:MCBI.0000009855.14648.2c

    Article  PubMed  Google Scholar 

  7. Zhang Y-HP (2011) Substrate channeling and enzyme complexes for biotechnological applications. Biotechnol Adv 29:715–725. https://doi.org/10.1016/j.biotechadv.2011.05.020

    Article  CAS  PubMed  Google Scholar 

  8. Schmitt DL, An S (2017) Spatial organization of metabolic enzyme complexes in cells. Biochemistry 56:3184–3196. https://doi.org/10.1021/acs.biochem.7b00249

    Article  CAS  PubMed  Google Scholar 

  9. Wang T, Qin X, Liang C, Yuan H (2018) Engineering substrate channeling in biosystems for improved efficiency. J Chem Technol Biotechnol 93:3364–3373. https://doi.org/10.1002/jctb.5731

    Article  CAS  Google Scholar 

  10. Srivastava DK, Bernhard SA (1987) Mechanism of transfer of reduced nicotinamide adenine dinucleotide among dehydrogenases. Transfer rates and equilibria with enzyme-enzyme complexes. Biochemistry 26:1240–1246. https://doi.org/10.1021/bi00379a006

    CAS  PubMed  Google Scholar 

  11. Chock PB, Gutfreund H (1988) Reexamination of the kinetics of the transfer of NADH between its complexes with glycerol-3-phosphate dehydrogenase and with lactate dehydrogenase. Proc Natl Acad Sci 85:8870–8874. https://doi.org/10.1073/pnas.85.23.8870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Srivastava DK, Smolen P, Betts GF, Fukushima T, Spivey HO, Bernhard SA (1989) Direct transfer of NADH between alpha-glycerol phosphate dehydrogenase and lactate dehydrogenase: fact or misinterpretation? Proc Natl Acad Sci 86:6464–6468. https://doi.org/10.1073/pnas.86.17.6464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu XM, Gutfreund H, Lakatos S, Chock PB (1991) Substrate channeling in glycolysis: a phantom phenomenon. Proc Natl Acad Sci 88:497–501. https://doi.org/10.1073/pnas.88.2.497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Knowles JR (1991) Calmer waters in the channel? J Theor Biol 152:53–55. https://doi.org/10.1016/S0022-5193(05)80509-0

  15. Cárdenas ML (1991) Are the transitory enzyme-enzyme complexes found in vitro also transitory in vivo? If so, are they physiologically important? J Theor Biol 152:111–113. https://doi.org/10.1016/S0022-5193(05)80522-3

  16. Clegg JS (1991) The physiological significance of metabolite channeling: an idea whose time has come. J Theor Biol 152:63–64. https://doi.org/10.1016/S0022-5193(05)80511-9

  17. Cornish-Bowden A (1991) How much effect on free metabolite concentrations does channelling have? J Theor Biol 152:39–40. https://doi.org/10.1016/S0022-5193(05)80505-3

  18. Easterby J (1991) Homeostasis, flexibility and conflict in the kinetic advantage of channelling. J Theor Biol 152:47–48. https://doi.org/10.1016/S0022-5193(05)80507-7

  19. Gutfreund H, Chock P (1991) Substrate channeling among glycolytic enzymes: Fact or fiction. J Theor Biol 152:117–121. https://doi.org/10.1016/S0022-5193(05)80524-7

  20. Srere PA (1991) Channeling: the pathway that cannot be beaten. J Theor Biol 152:23. https://doi.org/10.1016/S0022-5193(05)80501-6

  21. Ovádi J (1991) Physiological significance of metabolite channelling: Author’s response to commentaries. J Theor Biol 152:135–141. https://doi.org/10.1016/S0022-5193(05)80528-4

  22. Cornish-Bowden A (1991) Failure of channelling to maintain low concentrations of metabolic intermediates. Eur J Biochem 195:103–108. https://doi.org/10.1111/j.1432-1033.1991.tb15681.x

  23. Mendes P Kell DB, Westerhoff HV (1992) Channelling can decrease pool size. Eur J Biochem 204:257–266. https://doi.org/10.1111/j.1432-1033.1992.tb16632.x

    Article  CAS  PubMed  Google Scholar 

  24. Cornish-Bowden A, Cardenas ML (1993) Channelling can affect concentrations of metabolic intermediates at constant net flux: artefact or reality? Eur J Biochem 213:87–92. https://doi.org/10.1111/j.1432-1033.1993.tb17737.x

    Article  CAS  PubMed  Google Scholar 

  25. Menedes P, Kell DB, Westerhoff HV, Mendes P (1996) Why and when channelling can decrease pool size at constant net flux in a simple dynamic channel. Biochim Biophys Acta - Gen Subj 1289:175–186. https://doi.org/10.1016/0304-4165(95)00152-2

  26. Cornish-Bowden A, Cárdenas ML, Letelier J-C, Soto-Andrade J, Abarzúa FG (2004) Understanding the parts in terms of the whole. Biol Cell 96:713–717. https://doi.org/10.1016/j.biolcel.2004.06.006

    Article  CAS  PubMed  Google Scholar 

  27. Idan O, Hess H (2012) Diffusive transport phenomena in artificial enzyme cascades on scaffolds. Nat Nanotechnol 7:769–770. https://doi.org/10.1038/nnano.2012.222

    Article  CAS  PubMed  Google Scholar 

  28. Idan O, Hess H (2013) Origins of activity enhancement in enzyme cascades on scaffolds. ACS Nano 7:8658–8665. https://doi.org/10.1021/nn402823k

    Article  CAS  PubMed  Google Scholar 

  29. Wheeldon I, Minteer SD, Banta S, Barton SC, Atanassov P, Sigman M (2016) Substrate channelling as an approach to cascade reactions. Nat Chem 8:299–309. https://doi.org/10.1038/nchem.2459

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Tsitkov S, Hess H (2016) Proximity does not contribute to activity enhancement in the glucose oxidasehorseradish peroxidase cascade. Nat Commun 7:13982. https://doi.org/10.1038/ncomms13982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Poshyvailo L, von Lieres E, Kondrat S (2017) Does metabolite channeling accelerate enzyme-catalyzed cascade reactions? PLoS One 12:e0172673. https://doi.org/10.1371/journal.pone.0172673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Sweetlove LJ, Fernie AR (2018) The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation. Nat Commun 9:2136. https://doi.org/10.1038/s41467-018-04543-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kuzmak A, Carmali S, von Lieres E, Russell AJ, Kondrat S (2019) Can enzyme proximity accelerate cascade reactions? Sci Rep 9:455. https://doi.org/10.1038/s41598-018-37034-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Reed LJ, Cox DJ (1966) Macromolecular Organization of Enzyme Systems. Annu Rev Biochem 35:57–84. https://doi.org/10.1146/annurev.bi.35.070166.000421

    Article  CAS  Google Scholar 

  35. Cori CF, Velick SF, Cori GT (1950) The combination of diphosphopyridine nucleotide with glyceraldehyde phosphate dehydrogenase. Biochim Biophys Acta 4:160–169. https://doi.org/10.1016/0006-3002(50)90020-5

  36. Srivastava DK, Bernhard, SA (1984) Direct transfer of reduced nicotinamide adenine dinucleotide from glyceraldehyde 3-phosphate dehydrogenase to liver alcohol dehydrogenase. Biochemistry 23:4538–4545. https://doi.org/10.1021/bi00315a006

    Article  CAS  PubMed  Google Scholar 

  37. Srivastava D, Bernhard S (1986) Metabolite transfer via enzyme-enzyme complexes. Science (80-) 234:1081–1086. https://doi.org/10.1126/science.3775377

  38. Robinson JB, Srere PA (1985) Organization of Krebs tricarboxylic acid cycle enzymes in mitochondria. J Biol Chem 260:10800–10805. https://doi.org/10.1016/S0021-9258(19)85153-0

  39. Robinson JB, Inman L, Sumegi B, Srere PA (1987) Further characterization of the Krebs tricarboxylic acid cycle metabolon. J Biol Chem 262:1786–1790. https://doi.org/10.1016/S0021-9258(19)75707-X

    Article  CAS  PubMed  Google Scholar 

  40. Srere PA (1985) The metabolon. Trends Biochem Sci 10:109–110. https://doi.org/10.1016/0968-0004(85)90266-X

    Article  Google Scholar 

  41. Mathews CK (1993) The cell-bag of enzymes or network of channels? J Bacteriol 175:6377–6381. https://doi.org/10.1128/JB.175.20.6377-6381.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Idan O, Hess H (2013) Engineering enzymatic cascades on nanoscale scaffolds. Curr Opin Biotechnol 24:606–611. https://doi.org/10.1016/j.copbio.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  43. Dewar MJ, Storch DM (1985) Alternative view of enzyme reactions. Proc Natl Acad Sci 82:2225–2229. https://doi.org/10.1073/pnas.82.8.2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thoden JB, Holden HM, Wesenberg G, Raushel FM, Rayment I (1997) Structure of carbamoyl phosphate synthetase: A journey of 96 Å from substrate to product. Biochemistry 36:6305–6316. https://doi.org/10.1021/bi970503q

    Article  CAS  PubMed  Google Scholar 

  45. Sauers CK, Jencks WP, Groh S (1975) Alcohol-bicarbonate-water system. Structure-reactivity studies on the equilibriums for formation of alkyl monocarbonates and on the rates of their decomposition in aqueous alkali. J Am Chem Soc 97:5546–5553. https://doi.org/10.1021/ja00852a038

    CAS  Google Scholar 

  46. Broussard TC, Pakhomova S, Neau DB, Bonnot R, Waldrop GL (2015) Structural analysis of substrate, reaction intermediate, and product binding in haemophilus influenzae biotin carboxylase. Biochemistry 54:3860–3870. https://doi.org/10.1021/acs.biochem.5b00340

    Article  CAS  PubMed  Google Scholar 

  47. Geck MK, Kirsch JF (1999) A novel, definitive test for substrate channeling illustrated with the aspartate aminotransferase/malate dehydrogenase system. Biochemistry 38:8032–8037. https://doi.org/10.1021/bi983029c

    Article  CAS  PubMed  Google Scholar 

  48. Jørgensen K, Rasmussen AV, Morant M, Nielsen AH, Bjarnholt N, Zagrobelny M, Bak S, Møller BL (2005) Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr Opin Plant Biol 8:280–291. https://doi.org/10.1016/j.pbi.2005.03.014

    Article  PubMed  CAS  Google Scholar 

  49. Kizer L, Pflera DJ, Pfleger BF, Keasling JD (2008) Application of functional genomics to pathway optimization for increased isoprenoid production. Appl Environ Microbiol 74:3229–3241. https://doi.org/10.1128/AEM.02750-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KLJ, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27:753–759. https://doi.org/10.1038/nbt.1557

    Article  CAS  PubMed  Google Scholar 

  51. Hyde CC, Ahmed SA, Padlan EA, Miles EW, Davies DR (1988) Three-dimensional structure of the tryptophan synthase alpha 2 beta 2 multienzyme complex from Salmonella typhimurium. J Biol Chem 263:17857–17871. https://doi.org/10.1016/S0021-9258(19)77913-7

  52. Perham RN (2000) Swinging arms and swinging domains in multifunctional enzymes: Catalytic machines for multistep reactions. Annu Rev Biochem 69:961–1004. https://doi.org/10.1146/annurev.biochem.69.1.961

    Article  CAS  PubMed  Google Scholar 

  53. Huang X, Holden HM, Raushel FM (2001) Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu Rev Biochem 70:149–180. https://doi.org/10.1146/annurev.biochem.70.1.149

    Article  CAS  PubMed  Google Scholar 

  54. Haanstra JR, González-Marcano EB, Gualdrón-López M, Michels PA (2016) Biogenesis, maintenance and dynamics of glycosomes in trypanosomatid parasites. Biochim Biophys Acta Mol Cell Res 1863:1038–1048. https://doi.org/10.1016/j.bbamcr.2015.09.015

    Article  CAS  Google Scholar 

  55. Fernie AR, Zhang Y, Sweetlove LJ (2018) Passing the Baton: Substrate channelling in respiratory metabolism. Research 2018:1–16. https://doi.org/10.1155/2018/1539325

    Article  Google Scholar 

  56. Zhang Y, Fernie AR (2021) Metabolons, enzyme-enzyme assemblies that mediate substrate channeling, and their roles in plant metabolism. Plant Commun 2:100081. https://doi.org/10.1016/j.xplc.2020.100081

    Article  PubMed  Google Scholar 

  57. Jandt U, You C, Zhang YH, Zeng A-P (2013) Advances in biochemical engineering/biotechnology, vol 137, pp 41–65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_221

  58. Pröschel M, Detsch R, Boccaccini AR, Sonnewald U (2015) Engineering of metabolic pathways by artificial enzyme channels. Front Bioeng Biotechnol 3:168. https://doi.org/10.3389/fbioe.2015.00168

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pravda L, Berka K, Svobodová Vaeková R, Sehnal D, Banáš P, Laskowski RA, Koča J, Otyepka M (2014) Anatomy of enzyme channels. BMC Bioinformatics 15:379. https://doi.org/10.1186/s12859-014-0379-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Miles EW (1979) Adv. Enzymol. Relat. Areas Mol. Biol, vol 49, pp 127–186. Wiley Blackwell. https://doi.org/10.1002/9780470122945.ch4

  61. Holden HM, Thoden JB, Raushel FM (1998) Carbamoyl phosphate synthetase: a tunnel runs through it. Curr Opin Struct Biol 8:679–685. https://doi.org/10.1016/S0959-440X(98)80086-9

  62. Manjasetty BA, Powlowski J, Vrielink A (2003) Crystal structure of a bifunctional aldolase-dehydrogenase: Sequestering a reactive and volatile intermediate. Proc Natl Acad Sci 100:6992–6997. https://doi.org/10.1073/pnas.1236794100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Smith NE, Vrielink A, Attwood PV, Corry B (2012) Biological channeling of a reactive intermediate in the bifunctional enzyme DmpFG. Biophys J 102:868–877. https://doi.org/10.1016/j.bpj.2012.01.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ferone R, Roland S (1980) Dihydrofolate reductase: thymidylate synthase, a bifunctional polypeptide from Crithidia fasciculata. Proc Natl Acad Sci 77:5802–5806. https://doi.org/10.1073/pnas.77.10.5802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stroud RM (1994) An electrostatic highway. Nat Struct Biol 1:131–134. https://doi.org/10.1038/nsb0394-131

    Article  CAS  PubMed  Google Scholar 

  66. Knighton DR, Kan C-C, Howland E, Janson CA, Hostomska Z, Welsh KM, Matthews DA (1994) Structure of and kinetic channelling in bifunctional dihydrofolate reductase-thymidylate synthase. Nat Struct Biol 1:186–194. https://doi.org/10.1038/nsb0394-186

    Article  CAS  PubMed  Google Scholar 

  67. Elcock AH, Potter MJ, Matthews DA, Knighton DR, Mc-Cammon J (1996) Electrostatic channeling in the bifunctional enzyme dihydrofolate reductase-thymidylate synthase. J Mol Biol 262:370–374. https://doi.org/10.1006/jmbi.1996.0520

    Article  CAS  PubMed  Google Scholar 

  68. Trujillo M, Donald RGK, Roos DS, Greene PJ, Santi DV (1996) Heterologous expression and characterization of the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of toxoplasma gondii . Biochemistry 35:6366–6374. https://doi.org/10.1021/bi952923q

    Article  CAS  PubMed  Google Scholar 

  69. Elcock AH, Huber GA, McCammon JA (1997) Electrostatic channeling of substrates between enzyme active sites: comparison of simulation and experiment. Biochemistry 36:16049–16058. https://doi.org/10.1021/bi971709u

    Article  CAS  PubMed  Google Scholar 

  70. Metzger VT, Eun C, Kekenes-Huskey PM, Huber G, McCammon JA (2014) Electrostatic channeling in P. falciparum DHFR-TS: Brownian dynamics and smoluchowski modeling. Biophys J 107:2394–2402. https://doi.org/10.1016/j.bpj.2014.09.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Srere PA (1987) Complexes of sequential metabolic enzymes. Annu Rev Biochem 56:89–124. https://doi.org/10.1146/annurev.bi.56.070187.000513

    Article  CAS  PubMed  Google Scholar 

  72. Vélot C, Mixon MB, Teige M, Srere PA (1997) Model of a quinary structure between Krebs TCA cycle enzymes: A model for the metabolon. Biochemistry 36:14271–14276. https://doi.org/10.1021/bi972011j

    Article  PubMed  Google Scholar 

  73. Wu F, Minteer S (2015) Krebs cycle metabolon: Structural evidence of substrate channeling revealed by cross-linking and mass spectrometry. Angew Chemie Int Ed 54:1851–1854. https://doi.org/10.1002/anie.201409336

    Article  CAS  Google Scholar 

  74. Sathyanarayanan N, Cannone G, Gakhar L, Katagihallimath N, Sowdhamini R, Ramaswamy S, Vinothkumar KR (2019) Molecular basis for metabolite channeling in a ring opening enzyme of the phenylacetate degradation pathway. Nat Commun 10:4127. https://doi.org/10.1038/s41467-019-11931-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Liu Y, Hickey DP, Guo J-Y, Earl E, Abdellaoui S, Milton RD, Sigman MS, Minteer SD, Calabrese Barton S (2017) Substrate channeling in an artificial metabolon: A molecular dynamics blueprint for an experimental peptide bridge. ACS Catal 7:2486–2493. https://doi.org/10.1021/acscatal.6b03440

    Article  CAS  Google Scholar 

  76. Shearer G, Lee JC, Koo J-a, Kohl DH (2005) Quantitative estimation of channeling from early glycolytic intermediates to CO2 in intact Escherichia coli. FEBS J 272:3260–3269. https://doi.org/10.1111/j.1742-4658.2005.04712.x

    Article  CAS  PubMed  Google Scholar 

  77. Wiechert W (2001) 13C metabolic flux analysis. Metab Eng 3:195–206. https://doi.org/10.1006/mben.2001.0187

    Article  CAS  PubMed  Google Scholar 

  78. Williams TC, Sweetlove LJ, George Ratcliffe R (2011) Capturing metabolite channeling in metabolic flux phenotypes. Plant Physiol 157:981–984. https://doi.org/10.1104/pp.111.184887

  79. Wiechert W, Niedenführ S, Nöh K (2015) Fundam. Bioeng, pp 97–142. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany. https://doi.org/10.1002/9783527697441.ch05

  80. Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7:254–261. https://doi.org/10.1016/j.pbi.2004.03.007

    Article  CAS  PubMed  Google Scholar 

  81. Huang Y-mmM, Huber GA, Wang N, Minteer SD, McCammon JA (2018) Brownian dynamic study of an enzyme metabolon in the TCA cycle: Substrate kinetics and channeling. Protein Sci 27:463–471. https://doi.org/10.1002/pro.3338

    Article  CAS  PubMed  Google Scholar 

  82. Zhang Y, Beard KFM, Swart C, Bergmann S, Krahnert I, Nikoloski Z, Graf A, Ratcliffe RG, Sweetlove LJ, Fernie AR, Obata T (2017) Protein-protein interactions and metabolite channelling in the plant tricarboxylic acid cycle. Nat Commun 8:15212. https://doi.org/10.1038/ncomms15212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Graham JW, Williams TC, Morgan M, Fernie AR, Ratcliffe RG, Sweetlove LJ (2007) Glycolytic enzymes associate dynamically with mitochondria in response to respiratory demand and support substrate channeling. Plant Cell 19:3723–3738. https://doi.org/10.1105/tpc.107.053371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Debnam PM, Shearer G, Blackwood L, Kohl DH (1997) Evidence for channeling of intermediates in the oxidative pentose phosphate pathway by soybean and pea nodule extracts, yeast extracts, and purified yeast enzymes. Eur J Biochem 246:283–290. https://doi.org/10.1111/j.1432-1033.1997.00283.x

    Article  CAS  PubMed  Google Scholar 

  85. Buchner A, Tostevin F, Gerland U (2013) Clustering and optimal arrangement of enzymes in reaction-diffusion systems. Phys Rev Lett 110:208104. https://doi.org/10.1103/PhysRevLett.110.208104

    Article  PubMed  CAS  Google Scholar 

  86. Castellana M, Wilson MZ, Xu Y, Joshi P, Cristea IM, Rabinowitz JD, Gitai Z, Wingreen NS (2014) Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat Biotechnol 32:1011–1018. https://doi.org/10.1038/nbt.3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gopich IV (2021) Cluster channeling in cascade reactions. J Phys Chem B 125:2061–2073. https://doi.org/10.1021/acs.jpcb.0c11155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Parsons M, Furuya T, Pal S, Kessler P (2001) Biogenesis and function of peroxisomes and glycosomes. Mol Biochem Parasitol 115:19–28. https://doi.org/10.1016/S0166-6851(01)00261-4

  89. An S, Kumar R, Sheets ED, Benkovic SJ (2008) Reversible compartmentalization of de Novo Purine biosynthetic complexes in living cells. Science (80-) 320:103–106. https://doi.org/10.1126/science.1152241

  90. Pedley AM, Benkovic SJ (2017) A new view into the regulation of purine metabolism: The purinosome. Trends Biochem Sci 42:141–154. https://doi.org/10.1016/j.tibs.2016.09.009

    Article  CAS  PubMed  Google Scholar 

  91. Wilner OI, Shimron S, Weizmann Y, Wang Z-G, Willner I (2009) Self-assembly of enzymes on DNA scaffolds: En route to biocatalytic cascades and the synthesis of metallic nanowires. Nano Lett 9:2040–2043. https://doi.org/10.1021/nl900302z

    Article  CAS  PubMed  Google Scholar 

  92. Wilner OI, Weizmann Y, Gill R, Lioubashevski O, Freeman R, Willner I (2009) Enzyme cascades activated on topologically programmed DNA scaffolds. Nat Nanotechnol 4:249–254. https://doi.org/10.1038/nnano.2009.50

    Article  CAS  PubMed  Google Scholar 

  93. Delebecque CJ, Lindner AB, Silver PA, Aldaye FA (2011) Organization of intracellular reactions with rationally designed RNA assemblies. Science (80-) 333:470–474. https://doi.org/10.1126/science.1206938

  94. You C, Myung S, Zhang Y-HP (2012) Facilitated substrate channeling in a self-assembled trifunctional enzyme complex. Angew Chemie Int Ed 51:8787–8790. https://doi.org/10.1002/anie.201202441

    Article  CAS  Google Scholar 

  95. Fu J, Liu M, Liu Y, Woodbury NW, Yan H (2012) Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J Am Chem Soc 134:5516–5519. https://doi.org/10.1021/ja300897h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fu J, Yang YR, Johnson-Buck A, Liu M, Liu Y, Walter NG, Woodbury NW, Yan H (2014) Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. Nat Nanotechnol 9:531–536. https://doi.org/10.1038/nnano.2014.100

    Article  CAS  PubMed  Google Scholar 

  97. Yang YR, Liu Y, Yan H (2015) DNA nanostructures as programmable biomolecular scaffolds. Bioconjug Chem 26:1381–1395. https://doi.org/10.1021/acs.bioconjchem.5b00194

    Article  CAS  PubMed  Google Scholar 

  98. Bülow L (1991) Multienzyme systems obtained by gene fusion. Trends Biotechnol 9:226–231. https://doi.org/10.1016/0167-7799(91)90075-S

    Article  PubMed  Google Scholar 

  99. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302. https://doi.org/10.1038/nature04586

    Article  CAS  PubMed  Google Scholar 

  100. Dey S, Fan C, Gothelf KV, Li J, Lin C, Liu L, Liu N, Nijenhuis MAD, Saccà B, Simmel FC, Yan H, Zhan P (2021) DNA origami. Nat Rev Methods Prim 1:13. https://doi.org/10.1038/s43586-020-00009-8

    Article  CAS  Google Scholar 

  101. Bayer EA, Morag E, Lamed R (1994) The cellulosome A treasure-trove for biotechnology. Trends Biotechnol 12:379–386. https://doi.org/10.1016/0167-7799(94)90039-6

  102. Mingardon F, Chanal A, Tardif C, Bayer EA, Fierobe H-P (2007) Exploration of new geometries in cellulosome-like chimeras. Appl Environ Microbiol 73:7138–7149. https://doi.org/10.1128/AEM.01306-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Moehlenbrock MJ, Toby TK, Waheed A, Minteer SD (2010) Metabolon catalyzed pyruvate/air biofuel cell. J Am Chem Soc 132:6288–6289. https://doi.org/10.1021/ja101326b

    Article  CAS  PubMed  Google Scholar 

  104. Xin L, Zhou C, Yang Z, Liu D (2013) Regulation of an enzyme cascade reaction by a DNA machine. Small 9:3088–3091. https://doi.org/10.1002/smll.201300019

    Article  CAS  PubMed  Google Scholar 

  105. Zhao Z, Fu J, Dhakal S, Johnson-Buck A, Liu M, Zhang T, Woodbury NW, Liu Y, Walter NG, Yan H (2016) Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion. Nat Commun 7:10619. https://doi.org/10.1038/ncomms10619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Collins FC, Kimball GE (1949) Diffusion-controlled reaction rates. J Colloid Sci 4:425–437. https://doi.org/10.1016/0095-8522(49)90023-9

  107. Berg OG (1978) On diffusion-controlled dissociation. Chem Phys 31:47–57. https://doi.org/10.1016/0301-0104(78)87025-6

  108. Oliveira SM, Neeli-Venkata R, Goncalves NS, Santinha JA, Martins L, Tran H, Mäkelä J, Gupta A, Barandas M, Häkkinen A, Lloyd-Price J, Fonseca JM, Ribeiro AS (2016) Increased cytoplasm viscosity hampers aggregate polar segregation in Escherichia coli. Mol Microbiol 99:686–699. https://doi.org/10.1111/mmi.13257

    Article  CAS  PubMed  Google Scholar 

  109. Elcock AH, McCammon JA (1996) Evidence for electrostatic channeling in a fusion protein of malate dehydrogenase and citrate synthase. Biochemistry 35:12652–12658. https://doi.org/10.1021/bi9614747

    Article  CAS  PubMed  Google Scholar 

  110. Fulton AB (1982) How crowded is the cytoplasm? Cell 30:345–347. https://doi.org/10.1016/0092-8674(82)90231-8

  111. Zimmerman SB, Trach SO (1991) Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol 222:599–620. https://doi.org/10.1016/0022-2836(91)90499-V

    Article  CAS  PubMed  Google Scholar 

  112. Ellis R (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26:597–604. https://doi.org/10.1016/S0968-0004(01)01938-7

  113. Herzfeld J (2004) Crowding-induced organization in cells: spontaneous alignment and sorting of filaments with physiological control points. J Mol Recognit 17:376–381. https://doi.org/10.1002/jmr.703

    Article  CAS  PubMed  Google Scholar 

  114. Weiss M (2014) Int. Rev. Cell Mol. Biol, 1st edn, vol 307, pp 383–417. Elsevier Inc. https://doi.org/10.1016/B978-0-12-800046-5.00011-4

  115. Gomez D, Huber K, Klumpp S (2019) On protein folding in crowded conditions. J Phys Chem Lett 10:7650–7656. https://doi.org/10.1021/acs.jpclett.9b02642

    Article  CAS  PubMed  Google Scholar 

  116. Tabaka M, Kalwarczyk T, Holyst R (2014) Quantitative influence of macromolecular crowding on gene regulation kinetics. Nucleic Acids Res 42:727–738. https://doi.org/10.1093/nar/gkt907

    Article  CAS  PubMed  Google Scholar 

  117. Pastor I, Pitulice L, Balcells C, Vilaseca E, Madurga S, Isvoran A, Cascante M, Mas F (2014) Effect of crowding by Dextrans in enzymatic reactions. Biophys Chem 185:8–13. https://doi.org/10.1016/j.bpc.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  118. Maximova K, Wojtczak J, Trylska J (2019) Enzymatic activity of human immunodeficiency virus type 1 protease in crowded solutions. Eur Biophys J 48:685–689. https://doi.org/10.1007/s00249-019-01392-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Skóra T, Popescu MN, Kondrat S (2021) Conformation-changing enzymes and macromolecular crowding. Phys Chem Chem Phys 23:9065–9069. https://doi.org/10.1039/D0CP06631A

    Article  PubMed  Google Scholar 

  120. Han J, Herzfeld J (1993) Macromolecular diffusion in crowded solutions. Biophys J 65:1155–1161. https://doi.org/10.1016/S0006-3495(93)81145-7

  121. Dauty E, Verkman AS (2004) Molecular crowding reduces to a similar extent the diffusion of small solutes and macromolecules: measurement by fluorescence correlation spectroscopy. J Mol Recognit 17:441–447. https://doi.org/10.1002/jmr.709

    Article  CAS  PubMed  Google Scholar 

  122. Höfling F, Franosch T (2013) Anomalous transport in the crowded world of biological cells. Reports Prog Phys 76:046602. https://doi.org/10.1088/0034-4885/76/4/046602

    Article  CAS  Google Scholar 

  123. Kondrat S, Zimmermann O, Wiechert W, Lieres EV (2015) The effect of composition on diffusion of macromolecules in a crowded environment. Phys Biol 12:046003. https://doi.org/10.1088/1478-3975/12/4/046003

    Article  PubMed  CAS  Google Scholar 

  124. Feig M, Yu I, Wang PH, Nawrocki G, Sugita Y (2017) Crowding in cellular environments at an atomistic level from computer simulations. J Phys Chem B 121:8009–8025. https://doi.org/10.1021/acs.jpcb.7b03570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Skóora T, Vaghefikia F, Fitter J, Kondrat S (2020) Macromolecular crowding: How shape and interactions affect diffusion. J Phys Chem B 124:7537–7543. https://doi.org/10.1021/acs.jpcb.0c04846

    Article  CAS  Google Scholar 

  126. Rohwer JM, Postma PW, Kholodenko BN, Westerhoff HV (1998) Implications of macromolecular crowding for signal transduction and metabolite channeling. Proc Natl Acad Sci 95:10547–10552. https://doi.org/10.1073/pnas.95.18.10547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang Y, Hess H (2017) Toward rational design of high-efficiency enzyme cascades. ACS Catal 7:6018–6027. https://doi.org/10.1021/acscatal.7b01766

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Centre grant No. 2017/25/B/ST3/02456 to S.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svyatoslav Kondrat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kondrat, S., von Lieres, E. (2022). Mechanisms and Effects of Substrate Channelling in Enzymatic Cascades. In: Stamatis, H. (eds) Multienzymatic Assemblies. Methods in Molecular Biology, vol 2487. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2269-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2269-8_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2268-1

  • Online ISBN: 978-1-0716-2269-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics