Skip to main content

Efficient Generation of CRISPR/Cas9-Based Mutants Supported by Fluorescent Seed Selection in Different Arabidopsis Accessions

  • Protocol
  • First Online:
Plant Gametogenesis

Abstract

Investigating the process of gamete formation in plants often requires the use of mutants of selected genes in various genetic backgrounds. For example, analysis of meiotic recombination based on sequencing or genotyping requires the generation of hybrids between two lines. Although T-DNA mutant collections of Arabidopsis thaliana are vast and easily accessible, they are largely confined to Col-0 background. This chapter describes how to efficiently generate knock-out mutants in different Arabidopsis accessions using CRISPR/Cas9 technology. The presented system is based on designing two single-guide RNAs (sgRNAs), which direct the Cas9 endonuclease to generate double-strand breaks at two sites, leading to genomic deletion in targeted gene. The presence of seed-expressed dsRed fluorescence cassette in the CRISPR construct facilitates preselection of genome-edited and transgene-free plants by monitoring the seed fluorescence under the epifluorescent microscope. The protocol provides the detailed information about all steps required to perform genome editing and to obtain loss-of-function mutants in different Arabidopsis accessions within merely two generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malley RCO, Barragan CC, Ecker JR (2015) A user’s guide to the Arabidopsis T-DNA insertion mutant collections. Methods Mol Biol 1284:323–342

    Article  Google Scholar 

  2. Sessions A, Burke E, Presting G et al (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994

    Article  CAS  Google Scholar 

  3. Alonso M, Stepanova AN, Leisse TJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  Google Scholar 

  4. Rosso MG, Li Y, Strizhov N et al (2003) An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol 53:247–259

    Article  CAS  Google Scholar 

  5. Nacry P, Camilleri C, Caboche M et al (1998) Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis. Genetics 149:641–650

    Article  CAS  Google Scholar 

  6. Bieluszewski T, Sura W, Dziegielewski W et al (2022) NuA4 and H2A.Z control environmental responses and autotrophic growth in Arabidopsis. Nat Commun 13:277

    Google Scholar 

  7. Capilla-Pérez L, Durand S, Hurel A et al (2021) The synaptonemal complex imposes crossover interference and heterochiasmy in Arabidopsis. Proc Natl Acad Sci U S A 118:e2023613118

    Article  Google Scholar 

  8. Giraut L, Falque M, Drouaud J et al (2011) Genome-wide crossover distribution in Arabidopsis thaliana meiosis reveals sex-specific patterns along chromosomes. PLoS Genet 7:e1002354

    Article  CAS  Google Scholar 

  9. Drouaud J, Camilleri C, Bourguignon P et al (2006) Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination “hot spots”. Genome Res 16:106–114

    Article  CAS  Google Scholar 

  10. Drouaud J, Khademian H, Giraut L et al (2013) Contrasted patterns of crossover and non-crossover at Arabidopsis thaliana meiotic recombination hotspots. PLoS Genet 9:e1003922

    Article  Google Scholar 

  11. Rowan BA, Patel V, Weigel D et al (2015) Rapid and inexpensive whole-genome genotyping-by-sequencing for crossover localization and fine-scale genetic mapping. G3 (Bethesda) 5:385–398

    Article  Google Scholar 

  12. Sun H, Rowan BA, Flood PJ et al (2019) Linked-read sequencing of gametes allows efficient genome-wide analysis of meiotic recombination. Nat Commun 10:4310

    Article  Google Scholar 

  13. Yelina NE, Lambing C, Hardcastle TJ et al (2015) DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis. Genes Dev 29:2183–2202

    Article  CAS  Google Scholar 

  14. Ziolkowski PA, Underwood CJ, Lambing C et al (2017) Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination. Genes Dev 31:306–317

    Article  CAS  Google Scholar 

  15. Serra H, Lambing C, Griffin CH et al (2018) Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis. Proc Natl Acad Sci 115:2437–2442

    Article  CAS  Google Scholar 

  16. Underwood CJ, Choi K, Lambing C et al (2018) Epigenetic activation of meiotic recombination near Arabidopsis thaliana centromeres via loss of H3K9me2 and non-CG DNA methylation. Genome Res 28:519–531

    Article  CAS  Google Scholar 

  17. Blackwell AR, Dluzewska J, Szymanska-Lejman M et al (2020) MSH2 shapes the meiotic crossover landscape in relation to interhomolog polymorphism in Arabidopsis. EMBO J 39:e104858

    Article  CAS  Google Scholar 

  18. Nageswaran DC, Kim J, Lambing C et al (2021) HIGH CROSSOVER RATE1 encodes PROTEIN PHOSPHATASE X1 and restricts meiotic crossovers in Arabidopsis. Nat Plants 7:452–467

    Article  CAS  Google Scholar 

  19. Yadav NS, Khadka J, Grafi G (2018) Arabidopsis mutants may represent recombinant introgression lines. BMC Res Notes 11:227

    Article  Google Scholar 

  20. Dluzewska J, Szymanska M, Ziolkowski PA (2018) Where to cross over? Defining crossover sites in plants. Front Genet 9:609

    Article  CAS  Google Scholar 

  21. Ma X, Zhang Q, Zhu Q et al (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284

    Article  CAS  Google Scholar 

  22. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  Google Scholar 

  23. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  Google Scholar 

  24. Zhao Y, Zhang C, Liu W et al (2016) An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci Rep 6:23890

    Article  CAS  Google Scholar 

  25. Ma X, Zhu Q, Chen Y et al (2016) CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol Plant 9:961–974

    Article  CAS  Google Scholar 

  26. Zhu L, Fernandez-Jimenez N, Szymanska-Lejman M et al (2021) Natural variation identifies SNI1, the SMC5/6 component, as a modifier of meiotic crossover in Arabidopsis. Proc Natl Acad Sci U S A 118:e2021970118

    Google Scholar 

  27. Pauwels L, De Clercq R, Goossens J et al (2018) A dual sgRNA approach for functional genomics in Arabidopsis thaliana. G3 (Bethesda) 8:2603–2615

    Article  CAS  Google Scholar 

  28. Hyun Y, Kim J, Cho SW et al (2015) Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. Planta 241:271–284

    Article  CAS  Google Scholar 

  29. Stuitje AR, Verbree EC, Van Der Linden KH et al (2003) Seed-expressed fluorescent proteins as versatile tools for easy (co)transformation and high-throughput functional genomics in Arabidopsis. Plant Biotechnol J 1:301–309

    Article  CAS  Google Scholar 

  30. Wise AA, Liu Z, Binns AN (2006) Three methods for the introduction of foreign DNA into Agrobacterium. Methods Mol Biol 343:43–54

    CAS  PubMed  Google Scholar 

  31. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  Google Scholar 

  32. Feng Z, Zhang B, Ding W et al (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232

    Article  CAS  Google Scholar 

  33. Qi LS, Larson MH, Gilbert LA et al (2013) Repurposing CRISPR as an RNA-γuided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    Article  CAS  Google Scholar 

  34. Liu G, Zhang Y, Zhang T (2020) Computational approaches for effective CRISPR guide RNA design and evaluation. Comput Struct Biotechnol J 18:35–44

    Article  CAS  Google Scholar 

  35. Alonso-Blanco C, Andrade J, Becker C et al (2016) 1,135 Genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166:481–491

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Jian-Kang Zhu for the 3×Flag-NLS-hSpCas9-NLS::NosT cassette which was used to construct pFGC-I2Cas9 plasmid. This work was supported by Polish National Science Centre grants 2016/22/E/NZ2/00455 to P.A.Z., and a Foundation for Polish Science grant POIR.04.04.00-00-5C0F/17-00 to P.A.Z. M.Sz.-L. is the Adam Mickiewicz University Foundation scholarship holder in the academic year 2021/2022.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tomasz Bieluszewski or Piotr A. Ziolkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bieluszewski, T., Szymanska-Lejman, M., Dziegielewski, W., Zhu, L., Ziolkowski, P.A. (2022). Efficient Generation of CRISPR/Cas9-Based Mutants Supported by Fluorescent Seed Selection in Different Arabidopsis Accessions. In: Lambing, C. (eds) Plant Gametogenesis. Methods in Molecular Biology, vol 2484. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2253-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2253-7_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2252-0

  • Online ISBN: 978-1-0716-2253-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics