Skip to main content

Photoactivated Adenylyl Cyclases as Optogenetic Modulators of Neuronal Activity

  • Protocol
  • First Online:
cAMP Signaling

Abstract

In the past 15 years, optogenetic methods became invaluable tools in neurobiological research but also in general cell biology. Most prominently, optogenetic methods utilize microbial rhodopsins to elicit neuronal de- or hyperpolarization. However, other optogenetic tools have emerged that allow influencing neuronal function by different approaches. In this chapter we describe the use of photoactivated adenylyl cyclases (PACs) as modulators of neuronal activity. Using Caenorhabditis elegans as a model organism, this chapter shows how to measure the effect of PAC photoactivation by behavioral assays in different tissues (neurons and muscles), as well as their significance to neurobiology. Further, this chapter describes in vitro cyclic nucleoside-3′,5′-monophosphate measurements (cNMP) to characterize new PACs in C. elegans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Consortium TCeS (1998) Genome sequence of the nematode C elegans: a platform for investigating biology. Science 282:2012–2018

    Article  Google Scholar 

  2. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    Article  CAS  Google Scholar 

  3. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B 314:1–340

    Article  CAS  Google Scholar 

  4. Xu X, Kim SK (2011) The early bird catches the worm: new technologies for the Caenorhabditis elegans toolkit. Nat Rev Genet 12(11):793–801. https://doi.org/10.1038/nrg3050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Husson SJ, Gottschalk A, Leifer AM (2013) Optogenetic manipulation of neural activity in C. elegans: from synapse to circuits and behaviour. Biol Cell 105(6):235–250. https://doi.org/10.1111/boc.201200069

    Article  CAS  PubMed  Google Scholar 

  6. Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15(24):2279–2284. https://doi.org/10.1016/j.cub.2005.11.032

    Article  CAS  PubMed  Google Scholar 

  7. Zhang F, Wang L-P, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446(7136):633–639. https://doi.org/10.1038/nature05744

    Article  CAS  PubMed  Google Scholar 

  8. Liewald JF, Brauner M, Stephens GJ, Bouhours M, Schultheis C, Zhen M, Gottschalk A (2008) Optogenetic analysis of synaptic function. Nat Methods 5(10):895–902. https://doi.org/10.1038/nmeth.1252

    Article  CAS  PubMed  Google Scholar 

  9. Liu Q, Hollopeter G, Jorgensen EM (2009) Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction. Proc Natl Acad Sci U S A 106(26):10823–10828

    Article  CAS  Google Scholar 

  10. Steuer Costa W, Yu S-C, Liewald JF, Gottschalk A (2017) Fast cAMP modulation of neurotransmission via neuropeptide signals and vesicle loading. Curr Biol 27(4):495–507. https://doi.org/10.1016/j.cub.2016.12.055

    Article  CAS  PubMed  Google Scholar 

  11. Gekel I, Neher E (2008) Application of an Epac activator enhances neurotransmitter release at excitatory central synapses. J Neurosci 28(32):7991–8002. https://doi.org/10.1523/JNEUROSCI.0268-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Etzl S, Lindner R, Nelson MD, Winkler A (2018) Structure-guided design and functional characterization of an artificial red light-regulated guanylate/adenylate cyclase for optogenetic applications. J Biol Chem 293(23):9078–9089. https://doi.org/10.1074/jbc.RA118.003069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ryu M-H, Kang I-H, Nelson MD, Jensen TM, Lyuksyutova AI, Siltberg-Liberles J, Raizen DM, Gomelsky M (2014) Engineering adenylate cyclases regulated by near-infrared window light. Proc Natl Acad Sci U S A 111(28):10167–10172. https://doi.org/10.1073/pnas.1324301111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weissenberger S, Schultheis C, Liewald JF, Erbguth K, Nagel G, Gottschalk A (2011) PACα--an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans. J Neurochem 116(4):616–625. https://doi.org/10.1111/j.1471-4159.2010.07148.x

    Article  CAS  PubMed  Google Scholar 

  15. Stierl M, Stumpf P, Udwari D, Gueta R, Hagedorn R, Losi A, Gärtner W, Petereit L, Efetova M, Schwarzel M, Oertner TG, Nagel G, Hegemann P (2011) Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J Biol Chem 286(2):1181–1188. https://doi.org/10.1074/jbc.M110.185496

    Article  CAS  PubMed  Google Scholar 

  16. Bock A, Annibale P, Konrad C, Hannawacker A, Anton SE, Maiellaro I, Zabel U, Sivaramakrishnan S, Falcke M, Lohse MJ (2020) Optical mapping of cAMP signaling at the nanometer scale. Cell 182(6):1519–1530 e1517. https://doi.org/10.1016/j.cell.2020.07.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cooper DM, Tabbasum VG (2014) Adenylate cyclase-centred microdomains. Biochem J 462(2):199–213. https://doi.org/10.1042/BJ20140560

    Article  CAS  PubMed  Google Scholar 

  18. Gao S, Nagpal J, Schneider MW, Kozjak-Pavlovic V, Nagel G, Gottschalk A (2015) Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp. Nat Commun 6:8046. https://doi.org/10.1038/ncomms9046

    Article  PubMed  Google Scholar 

  19. Scheib U, Stehfest K, Gee CE, Körschen HG, Fudim R, Oertner TG, Hegemann P (2015) The rhodopsin–guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling. Sci Signal 8:1–8

    Article  CAS  Google Scholar 

  20. Scheib U, Broser M, Constantin OM, Yang S, Gao S, Mukherjee S, Stehfest K, Nagel G, Gee CE, Hegemann P (2018) Rhodopsin-cyclases for photocontrol of cGMP/cAMP and 2.3 Å structure of the adenylyl cyclase domain. Nat Commun 9(1):2046. https://doi.org/10.1038/s41467-018-04428-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Swierczek NA, Giles AC, Rankin CH, Kerr RA (2011) High-throughput behavioral analysis in C. elegans. Nat Methods 8(7):592–598. https://doi.org/10.1038/nmeth.1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stirman JN, Crane MM, Husson SJ, Wabnig S, Schultheis C, Gottschalk A, Lu H (2011) Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans. Nat Methods 8(2):153–158. https://doi.org/10.1038/nmeth.1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stirman JN, Crane MM, Husson SJ, Gottschalk A, Lu H (2012) A multispectral optical illumination system with precise spatiotemporal control for the manipulation of optogenetic reagents. Nat Protoc 7(2):207–220. https://doi.org/10.1038/nprot.2011.433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Husson SJ, Costa WS, Schmitt C, Gottschalk A (2013) Keeping track of worm trackers. WormBook:1–17. https://doi.org/10.1895/wormbook.1.156.1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Gottschalk .

Editor information

Editors and Affiliations

1 Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Henss, T., Schneider, M., Vettkötter, D., Costa, W.S., Liewald, J.F., Gottschalk, A. (2022). Photoactivated Adenylyl Cyclases as Optogenetic Modulators of Neuronal Activity. In: Zaccolo, M. (eds) cAMP Signaling. Methods in Molecular Biology, vol 2483. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2245-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2245-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2244-5

  • Online ISBN: 978-1-0716-2245-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics