Skip to main content

Quantitative Phosphoproteomics to Study cAMP Signaling

  • Protocol
  • First Online:
cAMP Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2483))

Abstract

Cyclic adenosine monophosphate (cAMP) signaling activates multiple downstream cellular targets in response to different stimuli. Specific phosphorylation of key target proteins via activation of the cAMP effector protein kinase A (PKA) is achieved via signal compartmentalization. Termination of the cAMP signal is mediated by phosphodiesterases (PDEs), a diverse group of enzymes comprising several families that localize to distinct cellular compartments. By studying the effects of inhibiting individual PDE families on the phosphorylation of specific targets it is possible to gain information on the subcellular spatial organization of this signaling pathway.

We describe a phosphoproteomic approach that can detect PDE family-specific phosphorylation changes in cardiac myocytes against a high phosphorylation background. The method combines dimethyl labeling and titanium dioxide–mediated phosphopeptide enrichment, followed by tandem mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zaccolo M, Zerio A, Lobo MJ (2021) Subcellular organization of the cAMP signaling pathway. Pharmacol Rev 73:278–309. https://doi.org/10.1124/pharmrev.120.000086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295:1711–1715. https://doi.org/10.1126/science.1069982

    Article  CAS  PubMed  Google Scholar 

  3. Surdo NC, Berrera M, Koschinski A et al (2017) FRET biosensor uncovers cAMP nano-domains at β-adrenergic targets that dictate precise tuning of cardiac contractility. Nat Commun 8:15031. https://doi.org/10.1038/ncomms15031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zaccolo M (2021) cAMP buffering via liquid-liquid phase separation. Function (Oxford) 2:zqaa048. https://doi.org/10.1093/function/zqaa048

    Article  Google Scholar 

  5. Zaccolo M (2009) cAMP signal transduction in the heart: understanding spatial control for the development of novel therapeutic strategies. Br J Pharmacol 158:50–60. https://doi.org/10.1111/j.1476-5381.2009.00185.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Taylor SS, Kim C, Cheng CY et al (2008) Signaling through cAMP and cAMP-dependent protein kinase: diverse strategies for drug design. Biochim Biophys Acta 1784:16–26. https://doi.org/10.1016/j.bbapap.2007.10.002

    Article  CAS  PubMed  Google Scholar 

  7. Reiken S, Lacampagne A, Zhou H et al (2003) PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure. J Cell Biol 160:919–928. https://doi.org/10.1083/jcb.200211012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924. https://doi.org/10.1152/physrev.2000.80.2.853

    Article  CAS  PubMed  Google Scholar 

  9. Kirchberger MA, Tada M, Repke DI, Katz AM (1972) Cyclic adenosine 3’,5’-monophosphate-dependent protein kinase stimulation of calcium uptake by canine cardiac microsomes. J Mol Cell Cardiol 4:673–680. https://doi.org/10.1016/0022-2828(72)90120-4

    Article  CAS  PubMed  Google Scholar 

  10. Kho C, Lee A, Hajjar RJ (2012) Altered sarcoplasmic reticulum calcium cycling--targets for heart failure therapy. Nat Rev Cardiol 9:717–733. https://doi.org/10.1038/nrcardio.2012.145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cleland JG, Swedberg K, Poole-Wilson PA (1998) Successes and failures of current treatment of heart failure. Lancet 352(Suppl 1):SI19–SI28. https://doi.org/10.1016/s0140-6736(98)90015-0

    Article  PubMed  Google Scholar 

  12. Maurice DH, Ke H, Ahmad F et al (2014) Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 13:290–314. https://doi.org/10.1038/nrd4228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511. https://doi.org/10.1146/annurev.biochem.76.060305.150444

    Article  CAS  PubMed  Google Scholar 

  14. Zaccolo M (2006) Phosphodiesterases and compartmentalized cAMP signalling in the heart. Eur J Cell Biol 85:693–697. https://doi.org/10.1016/j.ejcb.2006.01.002

    Article  CAS  PubMed  Google Scholar 

  15. Schleicher K, Zaccolo M (2020) Defining a cellular map of cAMP nanodomains. Mol Pharmacol 99:mol.119.118869. https://doi.org/10.1124/mol.119.118869

    Article  CAS  Google Scholar 

  16. Sette C, Conti M (1996) Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation. J Biol Chem 271:16526–16534. https://doi.org/10.1074/jbc.271.28.16526

    Article  CAS  PubMed  Google Scholar 

  17. Mongillo M, Tocchetti CG, Terrin A et al (2006) Compartmentalized phosphodiesterase-2 activity blunts beta-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circ Res 98:226–234. https://doi.org/10.1161/01.RES.0000200178.34179.93

    Article  CAS  PubMed  Google Scholar 

  18. Lomas O, Brescia M, Carnicer R et al (2015) Adenoviral transduction of FRET-based biosensors for cAMP in primary adult mouse cardiomyocytes. Methods Mol Biol 1294:103–115. https://doi.org/10.1007/978-1-4939-2537-7_8

    Article  CAS  PubMed  Google Scholar 

  19. Boersema PJ, Raijmakers R, Lemeer S et al (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4:484–494. https://doi.org/10.1038/nprot.2009.21

    Article  CAS  PubMed  Google Scholar 

  20. Zhou H, Ye M, Dong J et al (2013) Robust phosphoproteome enrichment using monodisperse microsphere-based immobilized titanium (IV) ion affinity chromatography. Nat Protoc 8:461–480. https://doi.org/10.1038/nprot.2013.010

    Article  CAS  PubMed  Google Scholar 

  21. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372. https://doi.org/10.1038/nbt.1511

    Article  CAS  PubMed  Google Scholar 

  22. Cox J, Neuhauser N, Michalski A et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805. https://doi.org/10.1021/pr101065j

    Article  CAS  PubMed  Google Scholar 

  23. Tyanova S, Temu T, Sinitcyn P et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740. https://doi.org/10.1038/nmeth.3901

    Article  CAS  PubMed  Google Scholar 

  24. van de Meent MHM, de Jong GJ (2007) Improvement of the liquid-chromatographic analysis of protein tryptic digests by the use of long-capillary monolithic columns with UV and MS detection. Anal Bioanal Chem 388:195–200. https://doi.org/10.1007/s00216-007-1215-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Unwin RD, Griffiths JR, Leverentz MK et al (2005) Multiple reaction monitoring to identify sites of protein phosphorylation with high sensitivity. Mol Cell Proteomics 4:1134–1144. https://doi.org/10.1074/mcp.M500113-MCP200

    Article  CAS  PubMed  Google Scholar 

  26. Wu WW, Wang G, Insel PA et al (2011) Identification of proteins and phosphoproteins using pulsed Q collision induced dissociation (PQD). J Am Soc Mass Spectrom 22:1753–1762. https://doi.org/10.1007/s13361-011-0197-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Swaney DL, McAlister GC, Coon JJ (2008) Decision tree-driven tandem mass spectrometry for shotgun proteomics. Nat Methods 5:959–964. https://doi.org/10.1038/nmeth.1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the British Heart Foundation (PG/10/75/28537 and RG/17/6/32944) and the BHF Centre of Research Excellence, Oxford (RE/13/1/30181).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schleicher, K., Hester, S., Stegmann, M., Zaccolo, M. (2022). Quantitative Phosphoproteomics to Study cAMP Signaling. In: Zaccolo, M. (eds) cAMP Signaling. Methods in Molecular Biology, vol 2483. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2245-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2245-2_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2244-5

  • Online ISBN: 978-1-0716-2245-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics