Skip to main content

High-Efficiency Multi-site Genomic Editing (HEMSE) Made Easy

  • Protocol
  • First Online:
Recombineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2479))

Abstract

The ability to engineer bacterial genomes in an efficient way is crucial for many bio-related technologies. Single-stranded (ss) DNA recombineering technology allows to introduce mutations within bacterial genomes in a very simple and straightforward way. This technology was initially developed for E. coli but was later extended to other organisms of interest, including the environmentally and metabolically versatile Pseudomonas putida. The technology is based on three pillars: (1) adoption of a phage recombinase that works effectively in the target strain, (2) ease of introduction of short ssDNA oligonucleotide that carries the mutation into the bacterial cells at stake and (3) momentary suppression of the endogenous mismatch repair (MMR) through transient expression of a dominant negative mutL allele. In this way, the recombinase protects the ssDNA and stimulates recombination, while MutLE36KPP temporarily inhibits the endogenous MMR system, thereby allowing the introduction of virtually any possible type of genomic edits. In this chapter, a protocol is detailed for easily performing recombineering experiments aimed at entering single and multiple changes in the chromosome of P. putida. This was made by implementing the workflow named High-Efficiency Multi-site genomic Editing (HEMSE), which delivers simultaneous mutations with a simple and effective protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rogers JK, Church GM (2016) Multiplexed engineering in biology. Trends Biotechnol 34(3):198–206

    Article  CAS  Google Scholar 

  2. Esvelt KM, Wang HH (2013) Genome-scale engineering for systems and synthetic biology. Mol Syst Biol 9:641

    Article  Google Scholar 

  3. Martínez-García E, de Lorenzo V (2012) Transposon-based and plasmid-based genetic tools for editing genomes of Gram-negative bacteria. Methods Mol Biol 813:267–283

    Article  Google Scholar 

  4. Hmelo LR, Borlee BR, Almblad H et al (2015) Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange. Nat Protoc 10(11):1820–1841

    Article  CAS  Google Scholar 

  5. Ellis HM, Yu D, DiTizio T et al (2001) High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci U S A 98(12):6742–6746

    Article  CAS  Google Scholar 

  6. van Kessel JC, Hatfull GF (2007) Recombineering in Mycobacterium tuberculosis. Nat Methods 4(2):147–152

    Article  Google Scholar 

  7. Bao Z, Cartinhour S, Swingle B (2012) Substrate and target sequence length influence RecTE(Psy) recombineering efficiency in Pseudomonas syringae. PLoS One 7(11):e50617

    Article  CAS  Google Scholar 

  8. Binder S, Siedler S, Marienhagen J et al (2013) Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation. Nucleic Acids Res 41(12):6360–6369

    Article  CAS  Google Scholar 

  9. Wang HH, Isaacs FJ, Carr PA et al (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460(7257):894–898

    Article  CAS  Google Scholar 

  10. Nyerges A, Csorgo B, Draskovits G et al (2018) Directed evolution of multiple genomic loci allows the prediction of antibiotic resistance. Proc Natl Acad Sci U S A 115(25):E5726–E5735

    Article  CAS  Google Scholar 

  11. Isaacs FJ, Carr PA, Wang HH et al (2011) Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333(6040):348–353

    Article  CAS  Google Scholar 

  12. Wang HH, Huang PY, Xu G et al (2012) Multiplexed in vivo His-tagging of enzyme pathways for in vitro single-pot multienzyme catalysis. ACS Synth Biol 1(2):43–52

    Article  Google Scholar 

  13. Wang HH, Kim H, Cong L et al (2012) Genome-scale promoter engineering by coselection MAGE. Nat Methods 9(6):591–593

    Article  Google Scholar 

  14. Bonde MT, Kosuri S, Genee HJ et al (2015) Direct mutagenesis of thousands of genomic targets using microarray-derived oligonucleotides. ACS Synth Biol 4(1):17–22

    Article  CAS  Google Scholar 

  15. Kampers LFC, Volkers RJM, Martins Dos Santos VAP (2019) Pseudomonas putida KT2440 is HV1 certified, not GRAS. Microb Biotechnol 12(5):845–848

    Article  Google Scholar 

  16. Nikel PI, Martinez-Garcia E, de Lorenzo V (2014) Biotechnological domestication of pseudomonads using synthetic biology. Nat Rev Microbiol 12(5):368–379

    Article  CAS  Google Scholar 

  17. Nikel PI, Chavarria M, Danchin A et al (2016) From dirt to industrial applications: Pseudomonas putida as a synthetic biology chassis for hosting harsh biochemical reactions. Curr Opin Chem Biol 34:20–29

    Article  CAS  Google Scholar 

  18. Nikel PI, de Lorenzo V (2018) Pseudomonas putida as a functional chassis for industrial biocatalysis: from native biochemistry to trans-metabolism. Metab Eng 50:142–155

    Article  CAS  Google Scholar 

  19. Loeschcke A, Thies S (2015) Pseudomonas putida—a versatile host for the production of natural products. Appl Microbiol Biotechnol 99(15):6197–6214

    Article  CAS  Google Scholar 

  20. Poblete-Castro I, Becker J, Dohnt K et al (2012) Industrial biotechnology of Pseudomonas putida and related species. Appl Microbiol Biotechnol 93(6):2279–2290

    Article  CAS  Google Scholar 

  21. Nikel PI, Chavarría M, Fuhrer T et al (2015) Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the entner-doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways. J Biol Chem 290(43):25920–25932

    Article  CAS  Google Scholar 

  22. Aparicio T, Jensen SI, Nielsen AT et al (2016) The Ssr protein (T1E_1405) from Pseudomonas putida DOT-T1E enables oligonucleotide-based recombineering in platform strain P. putida EM42. Biotechnol J 11(10):1309–1319

    Article  CAS  Google Scholar 

  23. Ricaurte DE, Martinez-Garcia E, Nyerges A et al (2018) A standardized workflow for surveying recombinases expands bacterial genome-editing capabilities. Microb Biotechnol 11(1):176–188

    Article  CAS  Google Scholar 

  24. Aparicio T, de Lorenzo V, Martinez-Garcia E (2019) Improved thermotolerance of genome-reduced Pseudomonas putida EM42 enables effective functioning of the PL/cI857 system. Biotechnol J 14(1):e1800483

    Article  Google Scholar 

  25. Aparicio T, Nyerges A, Nagy I et al (2020) Mismatch repair hierarchy of Pseudomonas putida revealed by mutagenic ssDNA recombineering of the pyrF gene. Environ Microbiol 22(1):45–58

    Article  CAS  Google Scholar 

  26. Aparicio T, Nyerges A, Martínez-García E et al (2020) High-efficiency multi-site genomic editing of Pseudomonas putida through thermoinducible ssDNA Recombineering. iScience 23(3):100946

    Article  CAS  Google Scholar 

  27. Martinez-Garcia E, Nikel PI, Aparicio T et al (2014) Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb Cell Factories 13:159

    Article  Google Scholar 

  28. Manoil C, Beckwith J (1985) TnphoA: a transposon probe for protein export signals. Proc Natl Acad Sci U S A 82(23):8129–8133

    Article  CAS  Google Scholar 

  29. Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41(3):459–472

    Article  CAS  Google Scholar 

  30. Kessler B, de Lorenzo V, Timmis KN (1992) A general system to integrate lacZ fusions into the chromosomes of gram-negative eubacteria: regulation of the Pm promoter of the TOL plasmid studied with all controlling elements in monocopy. Mol Gen Genet 233(1–2):293–301

    Article  CAS  Google Scholar 

  31. Martínez-García E, Goñi-Moreno A, Bartley B et al (2019) SEVA 3.0: an update of the Standard European Vector Architecture for enabling portability of genetic constructs among diverse bacterial hosts. Nucleic Acids Res 48(D1):D1164–D1170

    Article  Google Scholar 

  32. Yee TW, Smith DW (1990) Pseudomonas chromosomal replication origins: a bacterial class distinct from Escherichia coli-type origins. Proc Natl Acad Sci U S A 87(4):1278–1282

    Article  CAS  Google Scholar 

  33. Wolanski M, Donczew R, Zawilak-Pawlik A et al (2014) oriC-encoded instructions for the initiation of bacterial chromosome replication. Front Microbiol 5:735

    PubMed  Google Scholar 

  34. Carnoy C, Roten CA (2009) The dif/Xer recombination systems in proteobacteria. PLoS One 4(9):e6531

    Article  Google Scholar 

  35. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  CAS  Google Scholar 

  36. Aparicio T, de Lorenzo V, Martínez-García E (2020) A broad host range plasmid-based roadmap for ssDNA-based recombineering in Gram-Negative bacteria. In: de la Cruz F (ed) Horizontal gene transfer: methods and protocols. Springer, New York, NY, pp 383–398

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was funded by the SETH (RTI2018-095584-B-C42) (MINECO/FEDER), SyCoLiM (ERA-COBIOTECH 2018—PCI2019-111859-2) Projects of the Spanish Ministry of Science and Innovation, The MADONNA (H2020-FET-OPEN-RIA-2017-1-766975), SynBio4Flav (H2020-NMBP-TR-IND/H2020-NMBP-BIO-2018-814650) and MIX-UP (MIX-UP H2020-BIO-CN-2019-870294) Contracts of the European Union and the InGEMICS-CM (S2017/BMD-3691) and BIOSINT-CM (Y2020/TCS-6555) Projects of the Comunidad de Madrid—European Structural and Investment Funds—(FSE, FECER). The authors declare that there is no conflict of interest. The bacterial strains and plasmids described are available upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor de Lorenzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aparicio, T., de Lorenzo, V., Martínez-García, E. (2022). High-Efficiency Multi-site Genomic Editing (HEMSE) Made Easy. In: Reisch, C.R. (eds) Recombineering. Methods in Molecular Biology, vol 2479. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2233-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2233-9_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2232-2

  • Online ISBN: 978-1-0716-2233-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics