Skip to main content

Temperature Quantification and Temperature Control in Optical Tweezers

  • Protocol
  • First Online:
Optical Tweezers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2478))

  • 1107 Accesses

Abstract

Optical tweezers are widely used to investigate biomolecules and biomolecular interactions. In these investigations, the biomolecules of interest are typically coupled to microscopic beads that can be optically trapped. Since high-intensity laser beams are required to trap such microscopic beads, laser-induced heating due to optical absorption is typically unavoidable. This chapter discusses how to identify, quantify, and control thermal effects in optical tweezers. We provide a brief overview of the reported causes and effects of unwanted heating in optical tweezers systems. Specific details are provided on methods to perform a temperature-independent trap calibration procedure. Finally, an effective temperature-control system is presented, and we discuss the operation of this system as well as the methods to measure the temperature at the optically trapped particle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Svoboda K, Schmidt C, Schnapp B, Block S (1993) Direct observation of kinesin stepping by optical trapping interferometry © 1993 Nature Publishing Group. Nature 365:721–728

    Article  ADS  Google Scholar 

  2. Smith SB, Cui Y, Bustamante C (2018) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271(5250):795–799

    Article  ADS  Google Scholar 

  3. Brouwer I et al (2016) Sliding sleeves of XRCC4-XLF bridge DNA and connect fragments of broken DNA. Nature 535(7613):566–569. https://doi.org/10.1038/nature18643

    Article  ADS  Google Scholar 

  4. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288

    Article  ADS  Google Scholar 

  5. Mahamdeh M, Schäffer E (2009) Optical tweezers with millikelvin precision of temperature-controlled objectives and base-pair resolution. Opt Express 17(19):17190. https://doi.org/10.1364/oe.17.017190

    Article  ADS  Google Scholar 

  6. Klemm K, Pieszyński K, Rozniakowski K (2007) Examination of air density fluctuations with the aid of laser beam. Opt Appl 37(3):219–228

    Google Scholar 

  7. Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM (2005) Direct observation of base-pair stepping by RNA polymerase. Nature 438(7067):460–465. https://doi.org/10.1038/nature04268

    Article  ADS  Google Scholar 

  8. Peterman EJG, Gittes F, Schmidt CF (2003) Laser-induced heating in optical traps. Biophys J 84(2 Pt 1):1308–1316. https://doi.org/10.1016/S0006-3495(03)74946-7

    Article  Google Scholar 

  9. Català F, Marsà F, Montes-Usategui M, Farré A, Martín-Badosa E (2017) Influence of experimental parameters on the laser heating of an optical trap. Sci Rep 7(1):1–9. https://doi.org/10.1038/s41598-017-15904-6

    Article  Google Scholar 

  10. Liu Y, Cheng DK, Sonek GJ, Berns MW, Chapman CF, Tromberg BJ (1995) Evidence for localized cell heating induced by infrared optical tweezers. Biophys J 68(5):2137–2144. https://doi.org/10.1016/S0006-3495(95)80396-6

    Article  Google Scholar 

  11. Mao H, Arias-Gonzalez JR, Smith SB, Tinoco I, Bustamante C (2005) Temperature control methods in a laser tweezers system. Biophys J 89:1308. https://doi.org/10.1529/biophysj.104.054536

    Article  Google Scholar 

  12. Roder PB, Smith BE, Zhou X, Crane MJ, Pauzauskie PJ (2015) Laser refrigeration of hydrothermal nanocrystals in physiological media. Proc Natl Acad Sci U S A 112(49):15024–15029. https://doi.org/10.1073/pnas.1510418112

    Article  ADS  Google Scholar 

  13. Berg-Sørensen K, Flyvbjerg H (2004) Power spectrum analysis for optical tweezers. Rev Sci Instrum 75(3):594–612. https://doi.org/10.1063/1.1645654

    Article  ADS  Google Scholar 

  14. Sarshar M, Wong WT, Anvari B (2014) Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers. J Biomed Opt 19(11):115001. https://doi.org/10.1117/1.jbo.19.11.115001

    Article  Google Scholar 

  15. Chakraborty D et al (2011) Generalised Einstein relation for hot Brownian motion. Europhys Lett 96(6):60009. https://doi.org/10.1209/0295-5075/96/60009

    Article  ADS  Google Scholar 

  16. De Lorenzo S, Ribezzi-Crivellari M, Arias-Gonzalez JR, Smith SB, Ritort F (2015) A temperature-jump optical trap for single-molecule manipulation. Biophys J 108(12):2854–2864. https://doi.org/10.1016/j.bpj.2015.05.017

    Article  Google Scholar 

  17. Kushwaha VS, Peterman EJG (2020) The temperature dependence of kinesin motor-protein mechanochemistry. Biochem Biophys Res Commun 529(3):812–818. https://doi.org/10.1016/j.bbrc.2020.06.004

    Article  Google Scholar 

  18. Blázquez-Castro A (2019) Optical tweezers: phototoxicity and thermal stress in cells and biomolecules. Micromachines 10(8):1–42. https://doi.org/10.3390/mi10080507

    Article  Google Scholar 

  19. Williams MC, Wenner JR, Rouzina I, Bloomfield VA (2001) Entropy and heat capacity of DNA melting from temperature dependence of single molecule stretching. Biophys J 80(4):1932–1939. https://doi.org/10.1016/S0006-3495(01)76163-2

    Article  Google Scholar 

  20. Heller I et al (2013) STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA. Nat Methods 10(9):910–916. https://doi.org/10.1038/nmeth.2599

    Article  Google Scholar 

  21. Tolić-Nørrelykke SF, Schäffer E, Howard J, Pavone FS, Jülicher F, Flyvbjerg H (2006) Calibration of optical tweezers with positional detection in the back focal plane. Rev Sci Instrum 77(10):103101. https://doi.org/10.1063/1.2356852

    Article  ADS  Google Scholar 

  22. DeVries RC (1992) Editorial comments on a paper by Rustum Roy. J Am Ceram Soc 75(11):2933–2933. https://doi.org/10.1111/j.1151-2916.1992.tb04366.x

    Article  Google Scholar 

  23. Moffitt JR, Chemla YR, Izhaky D, Bustamante C (2006) Differential detection of dual traps improves the spatial resolution of optical tweezers. Proc Natl Acad Sci U S A 103(24):9006–9011. https://doi.org/10.1073/pnas.0603342103

    Article  ADS  Google Scholar 

  24. Seol Y, Carpenter AE, Perkins TT (2006) Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Opt Lett 31(16):2429. https://doi.org/10.1364/ol.31.002429

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iddo Heller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Geldhof, J.J., Malinowska, A.M., Wuite, G.J.L., Peterman, E.J.G., Heller, I. (2022). Temperature Quantification and Temperature Control in Optical Tweezers. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 2478. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2229-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2229-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2228-5

  • Online ISBN: 978-1-0716-2229-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics