Skip to main content

One-Dimensional STED Microscopy in Optical Tweezers

  • Protocol
  • First Online:
Optical Tweezers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2478))

Abstract

Optical tweezers and fluorescence microscopy are powerful methods for investigating the mechanical and structural properties of biomolecules and for studying the dynamics of the biomolecular processes that these molecules are involved in. Here we provide an outline of the concurrent use of optical tweezers and fluorescence microscopy for analyzing biomolecular processes. In particular, we focus on the use of super-resolution microscopy in optical tweezers, which allows visualization of molecules at the higher molecular densities that are typically encountered in living systems. We provide specific details on the alignment procedures of the optical pathways for confocal fluorescence microscopy and 1D-STED microscopy and elaborate on how to diagnose and correct optical aberrations and STED phase plate misalignments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lichtman JW, Conchello JA (2005) Fluorescence microscopy. Nat Methods 2:910–919. https://doi.org/10.1038/nmeth817

    Article  Google Scholar 

  2. Bustamante C, Cheng W, Mejia YX, Meija YX (2011) Revisiting the central dogma one molecule at a time. Cell 144:480–497. https://doi.org/10.1016/j.cell.2011.01.033

    Article  Google Scholar 

  3. Heller I, Hoekstra TP, King GA et al (2014) Optical tweezers analysis of DNA–protein complexes. Chem Rev 114:3087–3119. https://doi.org/10.1021/cr4003006

    Article  Google Scholar 

  4. Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–228. https://doi.org/10.1146/annurev.biochem.77.043007.090225

    Article  Google Scholar 

  5. Gross P, Laurens N, Oddershede LB et al (2011) Quantifying how DNA stretches, melts and changes twist under tension. Nat Phys 7:731–736. https://doi.org/10.1038/nphys2002

    Article  Google Scholar 

  6. Biebricher AS, Heller I, Roijmans RFH et al (2015) The impact of DNA intercalators on DNA and DNA-processing enzymes elucidated through force-dependent binding kinetics. Nat Commun 6:7304. https://doi.org/10.1038/ncomms8304

    Article  ADS  Google Scholar 

  7. Vladescu ID, McCauley MJ, Nuñez ME et al (2007) Quantifying force-dependent and zero-force DNA intercalation by single-molecule stretching. Nat Methods 4:517–522. https://doi.org/10.1038/nmeth1044

    Article  Google Scholar 

  8. Woodside MT, Block SM (2014) Reconstructing folding energy landscapes by single-molecule force spectroscopy. Annu Rev Biophys 43:19–39. https://doi.org/10.1146/annurev-biophys-051013-022754

    Article  Google Scholar 

  9. Wang MD, Schnitzer MJ, Yin H et al (1998) Force and velocity measured for single molecules of RNA polymerase. Science 282:902–907

    Article  ADS  Google Scholar 

  10. Abbondanzieri EA, Greenleaf WJ, Shaevitz JW et al (2005) Direct observation of base-pair stepping by RNA polymerase. Nature 438:460–465. https://doi.org/10.1038/nature04268

    Article  ADS  Google Scholar 

  11. Yin H, Wang MD, Svoboda K et al (1995) Transcription against an applied force. Science 270:1653–1657. https://doi.org/10.1126/science.270.5242.1653

    Article  ADS  Google Scholar 

  12. Svoboda K, Schmidt CF, Schnapp BJ, Block SM (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365:721–727. https://doi.org/10.1038/365721a0

    Article  ADS  Google Scholar 

  13. Block SM, Goldstein LSB, Schnapp BJ (1990) Bead movement by single kinesin molecules studied with optical tweezers. Nature 348:348–352

    Article  ADS  Google Scholar 

  14. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288. https://doi.org/10.1364/OL.11.000288

    Article  ADS  Google Scholar 

  15. Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24:156–159

    Article  ADS  Google Scholar 

  16. Joo C, Balci H, Ishitsuka Y et al (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77:51–76. https://doi.org/10.1146/annurev.biochem.77.070606.101543

    Article  Google Scholar 

  17. Ha T, Kozlov AG, Lohman TM (2012) Single-molecule views of protein movement on single-stranded DNA. Annu Rev Biophys 41:295–319. https://doi.org/10.1146/annurev-biophys-042910-155351

    Article  Google Scholar 

  18. Hell SW (2009) Microscopy and its focal switch. Nat Methods 6:24–32. https://doi.org/10.1038/nmeth.1291

    Article  Google Scholar 

  19. Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016. https://doi.org/10.1146/annurev.biochem.77.061906.092014

    Article  Google Scholar 

  20. van Mameren J, Peterman EJG, Wuite GJL (2008) See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins. Nucleic Acids Res 36:4381–4389. https://doi.org/10.1093/nar/gkn412

    Article  Google Scholar 

  21. Gross P, Farge G, Peterman EJG, Wuite GJL (2010) Combining optical tweezers, single-molecule fluorescence microscopy, and microfluidics for studies of DNA-protein interactions. Methods Enzymol 475:427–453. https://doi.org/10.1016/S0076-6879(10)75017-5

    Article  Google Scholar 

  22. van Mameren J, Modesti M, Kanaar R et al (2009) Counting RAD51 proteins disassembling from nucleoprotein filaments under tension. Nature 457:745–748. https://doi.org/10.1038/nature07581

    Article  ADS  Google Scholar 

  23. Lang MJ, Fordyce PM, Engh AM et al (2004) Simultaneous, coincident optical trapping and single-molecule fluorescence. Nat Methods 1:133–139. https://doi.org/10.1038/nmeth714

    Article  Google Scholar 

  24. Heller I, Sitters G, Broekmans OD et al (2013) STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA. Nat Methods 10:910–916. https://doi.org/10.1038/nmeth.2599

    Article  Google Scholar 

  25. Harada Y, Funatsu T, Murakami K et al (1999) Single-molecule imaging of RNA polymerase-DNA interactions in real time. Biophys J 76:709–715. https://doi.org/10.1016/S0006-3495(99)77237-1

    Article  Google Scholar 

  26. Lomholt MA, Van Den Broek B, Kalisch SMJ et al (2009) Facilitated diffusion with DNA coiling. Proc Natl Acad Sci U S A 106:8204–8208. https://doi.org/10.1073/pnas.0903293106

    Article  ADS  Google Scholar 

  27. Candelli A, Wuite GJL, Peterman EJG (2011) Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA-protein interactions. Phys Chem Chem Phys 13:7263–7272. https://doi.org/10.1039/c0cp02844d

    Article  Google Scholar 

  28. Hohng S, Zhou R, Nahas MK et al (2007) Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the Holliday Junction. Science 318:279–283. https://doi.org/10.1126/science.1146113

    Article  ADS  Google Scholar 

  29. Zhou R, Kozlov AG, Roy R et al (2011) SSB functions as a sliding platform that migrates on DNA via reptation. Cell 146:222–232. https://doi.org/10.1016/j.cell.2011.06.036

    Article  Google Scholar 

  30. Schakenraad K, Biebricher AS, Sebregts M et al (2017) Hyperstretching DNA. Nat Commun 8:2197. https://doi.org/10.1038/s41467-017-02396-1

    Article  ADS  Google Scholar 

  31. Heller I, Sitters G, Broekmans OD et al (2014) Mobility analysis of super-resolved proteins on optically stretched DNA: comparing imaging techniques and parameters. ChemPhysChem 15:727–733. https://doi.org/10.1002/cphc.201300813

    Article  Google Scholar 

  32. Meijering AEC, Biebricher AS, Sitters G et al (2020) Imaging unlabeled proteins on DNA with super-resolution. Nucleic Acids Res 48:e34–e34. https://doi.org/10.1093/nar/gkaa061

    Article  Google Scholar 

  33. Leutenegger M, Rao R, Leitgeb RA, Lasser T (2006) Fast focus field calculations. Opt Express 14:11277. https://doi.org/10.1364/OE.14.011277

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iddo Heller .

Editor information

Editors and Affiliations

Ethics declarations

The combined optical tweezers and fluorescence technologies used in this article are patented and licensed to LUMICKS B.V., in which I.H, E.J.G.P., and G.J.L.W. declare a financial interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Man, T., Geldhof, J.J., Peterman, E.J.G., Wuite, G.J.L., Heller, I. (2022). One-Dimensional STED Microscopy in Optical Tweezers. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 2478. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2229-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2229-2_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2228-5

  • Online ISBN: 978-1-0716-2229-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics