Skip to main content

Lesion Network Mapping Using Resting-State Functional Connectivity MRI

  • Protocol
  • First Online:
Lesion-to-Symptom Mapping

Part of the book series: Neuromethods ((NM,volume 180))

  • 720 Accesses

Abstract

Brain lesions can allow for causal links between symptoms and human neuroanatomy. However, lesions causing the same symptom often fail to overlap a single brain region, leaving the localization unclear. Resting-state functional connectivity MRI is a powerful tool for mapping human brain networks. Using resting-state functional connectivity, one can test whether lesions causing the same symptom map to a functionally connected brain network rather than a single brain region. This approach, termed “lesion network mapping,” has proven useful for mapping a wide variety of lesion-induced neurological and psychiatric symptoms to brain networks. These lesion network mapping results are reproducible across independent datasets and show promise for identifying therapeutic targets for neuromodulation. Here, we review the methodology for lesion network mapping using functional connectivity MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Karnath HO, Sperber C, Rorden C (2017) Mapping human brain lesions and their functional consequences. NeuroImage 165:180–189. https://doi.org/10.1016/j.neuroimage.2017.10.028

    Article  CAS  PubMed  Google Scholar 

  2. Adolphs R (2016) Human lesion studies in the 21st century. Neuron 90(6):1151–1153. https://doi.org/10.1016/j.neuron.2016.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fox MD (2018) Mapping symptoms to brain networks with the human connectome. N Engl J Med 379(23):2237–2245. https://doi.org/10.1056/NEJMra1706158

    Article  CAS  PubMed  Google Scholar 

  4. Monakow C (1914) Die Lokalisation im Grosshirn: und der Abbau der Funktion durch kortikale Herde. Verlag von J.F. Bergmann, Wiesbaden

    Google Scholar 

  5. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711. https://doi.org/10.1038/nrn2201

    Article  CAS  PubMed  Google Scholar 

  6. Boes AD, Prasad S, Liu H, Liu Q, Pascual-Leone A, Caviness VS, Fox MD (2015) Network localization of neurological symptoms from focal brain lesions. Brain 138(Pt 10):3061–3075. https://doi.org/10.1093/brain/awv228

    Article  PubMed  PubMed Central  Google Scholar 

  7. de Haan B, Rorden C, Karnath HO (2013) Abnormal perilesional BOLD signal is not correlated with stroke patients’ behavior. Front Hum Neurosci 7:669. https://doi.org/10.3389/fnhum.2013.00669

    Article  PubMed  PubMed Central  Google Scholar 

  8. Veldsman M, Cumming T, Brodtmann A (2015) Beyond BOLD: optimizing functional imaging in stroke populations. Hum Brain Mapp 36(4):1620–1636. https://doi.org/10.1002/hbm.22711

    Article  PubMed  Google Scholar 

  9. Darby RR, Horn A, Cushman F, Fox MD (2018) Lesion network localization of criminal behavior. Proc Natl Acad Sci U S A 115(3):601–606. https://doi.org/10.1073/pnas.1706587115

    Article  CAS  PubMed  Google Scholar 

  10. Joutsa J, Horn A, Hsu J, Fox MD (2018) Localizing parkinsonism based on focal brain lesions. Brain 141(8):2445–2456. https://doi.org/10.1093/brain/awy161

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fasano A, Laganiere SE, Lam S, Fox MD (2017) Lesions causing freezing of gait localize to a cerebellar functional network. Ann Neurol 81(1):129–141. https://doi.org/10.1002/ana.24845

    Article  PubMed  PubMed Central  Google Scholar 

  12. Corp DT, Joutsa J, Darby RR, Delnooz CCS, van de Warrenburg BPC, Cooke D, Prudente CN, Ren J, Reich MM, Batla A, Bhatia KP, Jinnah HA, Liu H, Fox MD (2019) Network localization of cervical dystonia based on causal brain lesions. Brain 142(6):1660–1674. https://doi.org/10.1093/brain/awz112

    Article  PubMed  PubMed Central  Google Scholar 

  13. Horn A, Reich M, Vorwerk J, Li N, Wenzel G, Fang Q, Schmitz-Hübsch T, Nickl R, Kupsch A, Volkmann J, Kühn AA, Fox MD (2017) Connectivity predicts deep brain stimulation outcome in Parkinson’s disease. Ann Neurol. https://doi.org/10.1002/ana.24974

  14. Weigand A, Horn A, Caballero R, Cooke D, Stern AP, Taylor SF, Press D, Pascual-Leone A, Fox MD (2018) Prospective validation that Subgenual connectivity predicts antidepressant efficacy of transcranial magnetic stimulation sites. Biol Psychiatry 84(1):28–37. https://doi.org/10.1016/j.biopsych.2017.10.028

    Article  CAS  PubMed  Google Scholar 

  15. Fox MD, Buckner RL, White MP, Greicius MD, Pascual-Leone A (2012) Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol Psychiatry 72(7):595–603. https://doi.org/10.1016/j.biopsych.2012.04.028

    Article  PubMed  PubMed Central  Google Scholar 

  16. Padmanabhan JL, Cooke D, Joutsa J, Siddiqi SH, Ferguson M, Darby RR, Soussand L, Horn A, Kim NY, Voss JL, Naidech AM, Brodtmann A, Egorova N, Gozzi S, Phan TG, Corbetta M, Grafman J, Fox MD (2019) A human depression circuit derived from focal brain lesions. Biol Psychiatry 86(10):749–758. https://doi.org/10.1016/j.biopsych.2019.07.023

    Article  PubMed  PubMed Central  Google Scholar 

  17. Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K, Consortium W-MH (2013) The WU-Minn human connectome project: an overview. NeuroImage 80:62–79. https://doi.org/10.1016/j.neuroimage.2013.05.041

    Article  PubMed  Google Scholar 

  18. Holmes AJ, Hollinshead MO, O’Keefe TM, Petrov VI, Fariello GR, Wald LL, Fischl B, Rosen BR, Mair RW, Roffman JL, Smoller JW, Buckner RL (2015) Brain genomics Superstruct project initial data release with structural, functional, and behavioral measures. Sci Data 2:150031. https://doi.org/10.1038/sdata.2015.31

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD (2011) Large-scale automated synthesis of human functional neuroimaging data. Nat Methods 8(8):665–670. https://doi.org/10.1038/nmeth.1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Horn A, Kühn AA (2015) Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations. NeuroImage 107:127–135. https://doi.org/10.1016/j.neuroimage.2014.12.002

    Article  PubMed  Google Scholar 

  21. Murphy K, Fox MD (2017) Towards a consensus regarding global signal regression for resting state functional connectivity MRI. NeuroImage 154:169–173. https://doi.org/10.1016/j.neuroimage.2016.11.052

    Article  PubMed  Google Scholar 

  22. Snyder AZ, Raichle ME (2012) A brief history of the resting state: the Washington university perspective. NeuroImage 62(2):902–910. https://doi.org/10.1016/j.neuroimage.2012.01.044

    Article  PubMed  Google Scholar 

  23. Bijsterbosch J (2017) Introduction to resting state fMRI functional connectivity. Oxford neuroimaging primers, 1st edn. Oxford University Press, Oxford/New York

    Google Scholar 

  24. Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, Kent JD, Goncalves M, DuPre E, Snyder M, Oya H, Ghosh SS, Wright J, Durnez J, Poldrack RA, Gorgolewski KJ (2019) fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat Methods 16(1):111–116. https://doi.org/10.1038/s41592-018-0235-4

    Article  CAS  PubMed  Google Scholar 

  25. Snider SB, Hsu J, Darby RR, Cooke D, Fischer D, Cohen AL, Grafman JH, Fox MD (2020) Cortical lesions causing loss of consciousness are anticorrelated with the dorsal brainstem. Hum Brain Mapp. https://doi.org/10.1002/hbm.24892

  26. Kim NY, Hsu J, Talmasov D, Joutsa J, Soussand L, Wu O, Rost NS, Morenas-Rodríguez E, Martí-Fàbregas J, Pascual-Leone A, Corlett PR, Fox MD (2019) Lesions causing hallucinations localize to one common brain network. Mol Psychiatry. https://doi.org/10.1038/s41380-019-0565-3

  27. Darby RR, Laganiere S, Pascual-Leone A, Prasad S, Fox MD (2017) Finding the imposter: brain connectivity of lesions causing delusional misidentifications. Brain 140(Pt 2):497–507. https://doi.org/10.1093/brain/aww288

    Article  PubMed  Google Scholar 

  28. Lv H, Wang Z, Tong E, Williams LM, Zaharchuk G, Zeineh M, Goldstein-Piekarski AN, Ball TM, Liao C, Wintermark M (2018) Resting-state functional MRI: everything that nonexperts have always wanted to know. AJNR Am J Neuroradiol 39(8):1390–1399. https://doi.org/10.3174/ajnr.A5527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen K, Azeez A, Chen DY, Biswal BB (2020) Resting-state functional connectivity: signal origins and analytic methods. Neuroimaging Clin N Am 30(1):15–23. https://doi.org/10.1016/j.nic.2019.09.012

    Article  PubMed  Google Scholar 

  30. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102(27):9673–9678. https://doi.org/10.1073/pnas.0504136102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Darby RR, Joutsa J, Fox MD (2019) Network localization of heterogeneous neuroimaging findings. Brain 142(1):70–79. https://doi.org/10.1093/brain/awy292

    Article  PubMed  Google Scholar 

  32. Cohen AL, Soussand L, Corrow SL, Martinaud O, Barton JJS, Fox MD (2019) Looking beyond the face area: lesion network mapping of prosopagnosia. Brain 142(12):3975–3990. https://doi.org/10.1093/brain/awz332

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zheng Z, Pan P, Wang W, Shang H (2012) Neural network of primary focal dystonia by an anatomic likelihood estimation meta-analysis of gray matter abnormalities. J Neurol Sci 316(1–2):51–55. https://doi.org/10.1016/j.jns.2012.01.032

    Article  PubMed  Google Scholar 

  34. Batla A, Sánchez MC, Erro R, Ganos C, Stamelou M, Balint B, Brugger F, Antelmi E, Bhatia KP (2015) The role of cerebellum in patients with late onset cervical/segmental dystonia?--evidence from the clinic. Parkinsonism Relat Disord 21(11):1317–1322. https://doi.org/10.1016/j.parkreldis.2015.09.013

    Article  CAS  PubMed  Google Scholar 

  35. Darby RR, Joutsa J, Burke MJ, Fox MD (2018) Lesion network localization of free will. Proc Natl Acad Sci U S A 115(42):10792–10797. https://doi.org/10.1073/pnas.1814117115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Klingbeil J, Wawrzyniak M, Stockert A, Karnath HO, Saur D (2020) Hippocampal diaschisis contributes to anosognosia for hemiplegia: evidence from lesion network-symptom-mapping. NeuroImage 208:116485. https://doi.org/10.1016/j.neuroimage.2019.116485

    Article  PubMed  Google Scholar 

  37. Wawrzyniak M, Klingbeil J, Zeller D, Saur D, Classen J (2018) The neuronal network involved in self-attribution of an artificial hand: a lesion network-symptom-mapping study. NeuroImage 166:317–324. https://doi.org/10.1016/j.neuroimage.2017.11.011

    Article  PubMed  Google Scholar 

  38. Fischer DB, Boes AD, Demertzi A, Evrard HC, Laureys S, Edlow BL, Liu H, Saper CB, Pascual-Leone A, Fox MD, Geerling JC (2016) A human brain network derived from coma-causing brainstem lesions. Neurology 87(23):2427–2434. https://doi.org/10.1212/WNL.0000000000003404

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kim NY, Hsu J, Talmasov D, Joutsa J, Soussand L, Wu O, Rost NS, Morenas-Rodríguez E, Martí-Fàbregas J, Pascual-Leone A, Corlett PR, Fox MD (2021) Lesions causing hallucinations localize to one common brain network. Mol Psychiatry 26(4):1299–1309. https://doi.org/10.1038/s41380-019-0565-3

    Article  PubMed  Google Scholar 

  40. Laganiere S, Boes AD, Fox MD (2016) Network localization of hemichorea-hemiballismus. Neurology 86(23):2187–2195. https://doi.org/10.1212/WNL.0000000000002741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Joutsa J, Shih LC, Fox MD (2019) Mapping holmes tremor circuit using the human brain connectome. Ann Neurol 86(6):812–820. https://doi.org/10.1002/ana.25618

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sutterer MJ, Bruss J, Boes AD, Voss MW, Bechara A, Tranel D (2016) Canceled connections: lesion-derived network mapping helps explain differences in performance on a complex decision-making task. Cortex 78:31–43. https://doi.org/10.1016/j.cortex.2016.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lee I, Nielsen K, Nawaz U, Hall MH, Öngür D, Keshavan M, Brady R (2019) Diverse pathophysiological processes converge on network disruption in mania. J Affect Disord 244:115–123. https://doi.org/10.1016/j.jad.2018.10.087

    Article  PubMed  Google Scholar 

  44. Ferguson MA, Lim C, Cooke D, Darby RR, Wu O, Rost NS, Corbetta M, Grafman J, Fox MD (2019) A human memory circuit derived from brain lesions causing amnesia. Nat Commun 10(1):3497. https://doi.org/10.1038/s41467-019-11353-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cohen AL, Ferguson MA, Fox MD (2021) Lesion network mapping predicts post-stroke behavioural deficits and improves localization. Brain 144(4):e35. https://doi.org/10.1093/brain/awab002

    Article  PubMed  PubMed Central  Google Scholar 

  46. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62(1):42–52. https://doi.org/10.1016/j.neuron.2009.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weil RS, Hsu JK, Darby RR, Soussand L, Fox MD (2019) Neuroimaging in Parkinson’s disease dementia: connecting the dots. Brain Commun 1(1):fcz006. https://doi.org/10.1093/braincomms/fcz006

    Article  PubMed  PubMed Central  Google Scholar 

  48. Joutsa J, Shih LC, Fox MD (2019) Mapping holmes tremor circuit using the human brain connectome. Ann Neurol. https://doi.org/10.1002/ana.25618

  49. Kapur N (1996) Paradoxical functional facilitation in brain-behaviour research: a critical review. Brain 119(Pt 5):1775–1790

    Article  Google Scholar 

  50. Joutsa J, Shih LC, Horn A, Reich MM, Wu O, Rost NS, Fox MD (2018) Identifying therapeutic targets from spontaneous beneficial brain lesions. Ann Neurol 84(1):153–157. https://doi.org/10.1002/ana.25285

    Article  PubMed  Google Scholar 

  51. Al-Fatly B, Ewert S, Kübler D, Kroneberg D, Horn A, Kühn AA (2019) Connectivity profile of thalamic deep brain stimulation to effectively treat essential tremor. Brain 142(10):3086–3098. https://doi.org/10.1093/brain/awz236

    Article  PubMed  Google Scholar 

  52. Fox MD, Buckner RL, Liu H, Chakravarty MM, Lozano AM, Pascual-Leone A (2014) Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc Natl Acad Sci U S A 111(41):E4367–E4375. https://doi.org/10.1073/pnas.1405003111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ding Z, Huang Y, Bailey SK, Gao Y, Cutting LE, Rogers BP, Newton AT, Gore JC (2018) Detection of synchronous brain activity in white matter tracts at rest and under functional loading. Proc Natl Acad Sci U S A 115(3):595–600. https://doi.org/10.1073/pnas.1711567115

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Joutsa, J., Darby, R.R., Fox, M.D. (2022). Lesion Network Mapping Using Resting-State Functional Connectivity MRI. In: Pustina, D., Mirman, D. (eds) Lesion-to-Symptom Mapping. Neuromethods, vol 180. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-2225-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2225-4_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-2224-7

  • Online ISBN: 978-1-0716-2225-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics