Skip to main content

Absolute Quantification of Plasma Membrane Receptors Via Quantitative Flow Cytometry

  • Protocol
  • First Online:
VEGF Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2475))

Abstract

Plasma membrane receptors are transmembrane proteins that initiate cellular response following the binding of specific ligands (e.g., growth factors, hormones, and cytokines). The abundance of plasma membrane receptors can be a diagnostic or prognostic biomarker in many human diseases. One of the best techniques for measuring plasma membrane receptors is quantitative flow cytometry (qFlow). qFlow employs fluorophore-conjugated antibodies against the receptors of interest and corresponding fluorophore-loaded calibration beads offers standardized and reproducible measurements of plasma membrane receptors. More importantly, qFlow can achieve absolute quantification of plasma membrane receptors when phycoerythrin (PE) is the fluorophore of choice. Here we describe a detailed qFlow protocol to obtain absolute receptor quantities on the basis of PE calibration. This protocol is foundational for many previous and ongoing studies in quantifying tyrosine kinase receptors and G-protein-coupled receptors with in vitro cell models and ex vivo cell samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Leth-Larsen R, Lund RR, Ditzel HJ (2010) Plasma membrane proteomics and its application in clinical cancer biomarker discovery. Mol Cell Proteomics 9(7):1369–1382. https://doi.org/10.1074/mcp.R900006-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sopo M, Anttila M, Hämäläinen K, Kivelä A, Ylä-herttuala S, Kosma V-m (2019) Expression profiles of VEGF-A , VEGF-D and VEGFR1 are higher in distant metastases than in matched primary high grade epithelial ovarian cancer. BMC Cancer 19(1):584

    Article  Google Scholar 

  3. Weickhardt AJ, Williams DS, Lee CK, Chionh F, Simes J, Murone C, Wilson K, Parry MM, Asadi K, Scott AM, Punt CJA, Nagtegaal ID, Price TJ, Mariadason JM, Tebbutt NC (2015) Vascular endothelial growth factor D expression is a potential biomarker of bevacizumab benefit in colorectal cancer. Br J Cancer 113(1):37–45. https://doi.org/10.1038/bjc.2015.209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ram S, Kim D, Ober RJ, Ward ES (2014) The level of HER2 expression is a predictor of antibody-HER2 trafficking behavior in cancer cells. MAbs 6(5):1211–1219. https://doi.org/10.4161/mabs.29865

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen S, Le T, Harley BAC, Imoukhuede PI (2018) Characterizing glioblastoma heterogeneity via single-cell receptor quantification. Front Bioeng Biotechnol 6:92. https://doi.org/10.3389/fbioe.2018.00092

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vasilyev FF, Lopatnikova JA, Sennikov SV (2013) Optimized flow cytometry protocol for analysis of surface expression of interleukin-1 receptor types I and II. Cytotechnology 65(5):795–802. https://doi.org/10.1007/s10616-013-9546-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu LN, Su HN, Yan SG, Shao SM, Xie BB, Chen XL, Zhang XY, Zhou BC, Zhang YZ (2009) Probing the pH sensitivity of R-phycoerythrin: investigations of active conformational and functional variation. Biochim Biophys Acta 1787(7):939–946. https://doi.org/10.1016/j.bbabio.2009.02.018

    Article  CAS  PubMed  Google Scholar 

  8. Pannu KK, Joe ET, Iyer SB (2001) Performance evaluation of quantiBRITE phycoerythrin beads. Cytometry 45(4):250–258. https://doi.org/10.1002/1097-0320(20011201)45:4<250::AID-CYTO10021>3.0.CO;2-T

    Article  CAS  PubMed  Google Scholar 

  9. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 103(2):211–225. https://doi.org/10.1016/j.cell.2010.06.011

    Article  CAS  Google Scholar 

  10. Weddell JC, Imoukhuede PI (2018) Computational systems biology for the VEGF family in angiogenesis. In: Encyclopedia of cardiovascular research and medicine. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-12-809657-4.99548-6

    Chapter  Google Scholar 

  11. Shibuya M (2011) Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2(12):1097–1105. https://doi.org/10.1177/1947601911423031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fang Y, Kaszuba T, Imoukhuede PI (2020) Systems biology will direct vascular-targeted therapy for obesity. Front Physiol 11:831. https://doi.org/10.3389/fphys.2020.00831

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen S, Guo X, Imarenezor O, Imoukhuede PI (2015) Quantification of VEGFRs, NRP1, and PDGFRs on endothelial cells and fibroblasts reveals serum, intra-family ligand, and cross-family ligand regulation. Cell Mol Bioeng 8:383–403. https://doi.org/10.1007/s12195-015-0411-x

    Article  CAS  Google Scholar 

  14. Chen S, Imoukhuede PI (2019) Single-cell receptor quantification of an in vitro coculture angiogenesis model reveals VEGFR, NRP1, Tie2, and PDGFR regulation and endothelial heterogeneity. Processes 7(6):356. https://doi.org/10.3390/pr7060356

    Article  CAS  Google Scholar 

  15. Imoukhuede PI, Dokun AO, Annex BH, Popel AS (2013) Endothelial cell-by-cell profiling reveals the temporal dynamics of VEGFR1 and VEGFR2 membrane localization after murine hindlimb ischemia. Am J Physiol Heart Circ Physiol 304(8):H1085–H1093. https://doi.org/10.1152/ajpheart.00514.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Imoukhuede PI, Popel AS (2012) Expression of VEGF receptors on endothelial cells in mouse skeletal muscle. PLoS One 7(9):e44791. https://doi.org/10.1371/journal.pone.0044791

    Article  PubMed  PubMed Central  Google Scholar 

  17. Imoukhuede PI, Popel AS (2014) Quantitative fluorescent profiling of VEGFRs reveals tumor cell and endothelial cell heterogeneity in breast cancer xenografts. Cancer Med 3(2):225–244. https://doi.org/10.1002/cam4.188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fang Y, Imoukhuede PI (2017) Quantification of angiogenic biomarkers on circulating cells. Poster presented at tumor microenvironment symposium at University of Illinois at Urbana-Champaign, Champaign

    Google Scholar 

  19. Fang Y, Cifarelli V, Imoukhuede PI (2019) A pilot study: characterizing upregulation of VEGF receptors in obese adipose tissues via single-cell proteomic analysis. Oral presentation at Biomedical Engineering Society Annual Meetin, Philadelphia, PA

    Google Scholar 

  20. Gaddy TD, Arnheim AD, Finley SD (2017) Mechanistic modeling quantifies the influence of tumor growth kinetics on the response to anti-angiogenic treatment. bioRxiv. https://doi.org/10.1101/136531

  21. Yale School of Medicine. Flow cytometry (FACS) staining protocol (cell surface staining) <Yale Flow Cytometry>

    Google Scholar 

  22. Kraan J, Van Den Broek P, Verhoef C, Grunhagen DJ, Taal W, Gratama JW, Sleijfer S (2014) Endothelial CD276 (B7-H3) expression is increased in human malignancies and distinguishes between normal and tumour-derived circulating endothelial cells. Br J Cancer 111(1):149–156. https://doi.org/10.1038/bjc.2014.286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reichard A, Asosingh K (2019) Best practices for preparing a single cell suspension from solid tissues for flow cytometry. Cytometry A 95(2):219–226. https://doi.org/10.1002/cyto.a.23690

    Article  CAS  PubMed  Google Scholar 

  24. Cossarizza A, Chang HD, Radbruch A, Akdis M, Andrä I, Annunziato F, Bacher P, Barnaba V, Battistini L, Bauer WM, Baumgart S, Becher B, Beisker W, Berek C, Blanco A, Borsellino G, Boulais PE, Brinkman RR, Büscher M, Busch DH, Bushnell TP, Cao X, Cavani A, Chattopadhyay PK, Cheng Q, Chow S, Clerici M, Cooke A, Cosma A, Cosmi L, Cumano A, Dang VD, Davies D, De Biasi S, Del Zotto G, Della Bella S, Dellabona P, Deniz G, Dessing M, Diefenbach A, Di Santo J, Dieli F, Dolf A, Donnenberg VS, Dörner T, Ehrhardt GRA, Endl E, Engel P, Engelhardt B, Esser C, Everts B, Dreher A, Falk CS, Fehniger TA, Filby A, Fillatreau S, Follo M, Förster I, Foster J, Foulds GA, Frenette PS, Galbraith D, Garbi N, García-Godoy MD, Geginat J, Ghoreschi K, Gibellini L, Goettlinger C, Goodyear CS, Gori A, Grogan J, Gross M, Grützkau A, Grummitt D, Hahn J, Hammer Q, Hauser AE, Haviland DL, Hedley D, Herrera G, Herrmann M, Hiepe F, Holland T, Hombrink P, Houston JP, Hoyer BF, Huang B, Hunter CA, Iannone A, Jäck HM, Jávega B, Jonjic S, Juelke K, Jung S, Kaiser T, Kalina T, Keller B, Khan S, Kienhöfer D, Kroneis T, Kunkel D, Kurts C, Kvistborg P, Lannigan J, Lantz O, Larbi A, LeibundGut-Landmann S, Leipold MD, Levings MK, Litwin V, Liu Y, Lohoff M, Lombardi G, Lopez L, Lovett-Racke A, Lubberts E, Ludewig B, Lugli E, Maecker HT, Martrus G, Matarese G, Maueröder C, McGrath M, McInnes I, Mei HE, Melchers F, Melzer S, Mielenz D, Mills K, Mirrer D, Mjösberg J, Moore J, Moran B, Moretta A, Moretta L, Mosmann TR, Müller S, Müller W, Münz C, Multhoff G, Munoz LE, Murphy KM, Nakayama T, Nasi M, Neudörfl C, Nolan J, Nourshargh S, O'Connor JE, Ouyang W, Oxenius A, Palankar R, Panse I, Peterson P, Peth C, Petriz J, Philips D, Pickl W, Piconese S, Pinti M, Pockley AG, Podolska MJ, Pucillo C, Quataert SA, Radstake TRDJ, Rajwa B, Rebhahn JA, Recktenwald D, Remmerswaal EBM, Rezvani K, Rico LG, Robinson JP, Romagnani C, Rubartelli A, Ruckert B, Ruland J, Sakaguchi S, Sala-de-Oyanguren F, Samstag Y, Sanderson S, Sawitzki B, Scheffold A, Schiemann M, Schildberg F, Schimisky E, Schmid SA, Schmitt S, Schober K, Schüler T, Schulz AR, Schumacher T, Scotta C, Shankey TV, Shemer A, Simon AK, Spidlen J, Stall AM, Stark R, Stehle C, Stein M, Steinmetz T, Stockinger H, Takahama Y, Tarnok A, Tian ZG, Toldi G, Tornack J, Traggiai E, Trotter J, Ulrich H, van der Braber M, van Lier RAW, Veldhoen M, Vento-Asturias S, Vieira P, Voehringer D, Volk HD, von Volkmann K, Waisman A, Walker R, Ward MD, Warnatz K, Warth S, Watson JV, Watzl C, Wegener L, Wiedemann A, Wienands J, Willimsky G, Wing J, Wurst P, Yu L, Yue A, Zhang Q, Zhao Y, Ziegler S, Zimmermann J (2017) Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur J Immunol 47(10):1584–1797. https://doi.org/10.1002/eji.201646632

    Article  CAS  PubMed  Google Scholar 

  25. How flow cytometers work (2003) Practical flow cytometry. Wiley, Hoboken, pp 101–223. https://doi.org/10.1002/0471722731.ch4

    Book  Google Scholar 

  26. Chen S, Weddell JC, Gupta P, Conard G, Parkin J, Imoukhuede PI (2017) qFlow cytometry-based receptoromic screening: a high-throughput quantification approach informing biomarker selection and nanosensor development. In: Petrosko SH, Day ES (eds) Methods in molecular biology, 2nd edn. Springer, New York, pp 117–138

    Google Scholar 

  27. Fluorochrome Ex (nm) Em (nm) Filter LP e (cm-1 M-1) quantum yield brightness intensity brightness

    Google Scholar 

  28. Piatkevich KD, Verkhusha VV (2011) Guide to red fluorescent proteins and biosensors for flow cytometry. Methods Cell Biol 102:431–461. https://doi.org/10.1016/B978-0-12-374912-3.00017-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kantor AB, Moore WA, Meehan S, Parks DR (2016) A quantitative method for comparing the brightness of antibody-dye reagents and estimating antibodies bound per cell. In: Current protocols in cytometry. Wiley, Hoboken. https://doi.org/10.1002/cpcy.6

    Chapter  Google Scholar 

  30. Basith S, Cui M, Macalino SJY, Park J, Clavio NAB, Kang S, Choi S (2018) Exploring G protein-coupled receptors (GPCRs) ligand space via cheminformatics approaches: impact on rational drug design. Front Pharmacol 9:128. https://doi.org/10.3389/fphar.2018.00128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reinl EL, Goodwin ZA, Raghuraman N, Lee GY, Jo EY, Gezahegn BM, Pillai MK, Cahill AG, de Guzman SC, England SK (2017) Novel oxytocin receptor variants in laboring women requiring high doses of oxytocin. Am J Obstet Gynecol 217:214.e1–214.e8. https://doi.org/10.1016/j.ajog.2017.04.036

    Article  CAS  Google Scholar 

  32. Naturally Occurring Genetic Variants in the Oxytocin Receptor Alter Receptor Signaling Profiles, PMID: 34661073

    Google Scholar 

  33. Pharmacological chaperones for the oxytocin receptor increase oxytocin responsiveness in myometrial cells. https://doi.org/10.1016/j.jbc.2022.101646

  34. Diks AM, Bonroy C, Teodosio C, Groenland RJ, de Mooij B, de Maertelaere E, Neirynck J, Philippe J, Orfao A, van Dongen JJM, Berkowska MA (2019) Impact of blood storage and sample handling on quality of high dimensional flow cytometric data in multicenter clinical research. J Immunol Methods 475:112616. https://doi.org/10.1016/j.jim.2019.06.007

    Article  CAS  PubMed  Google Scholar 

  35. Tsuji K, Ojima M, Otabe K, Horie M, Koga H, Sekiya I, Muneta T (2017) Effects of different cell-detaching methods on the viability and cell surface antigen expression of synovial mesenchymal stem cells. Cell Transplant 26(6):1089–1102. https://doi.org/10.3727/096368917X694831

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kaur M, Esau L (2015) Two-step protocol for preparing adherent cells for high-throughput flow cytometry. BioTechniques 59(3):119–126. https://doi.org/10.2144/000114325

    Article  CAS  PubMed  Google Scholar 

  37. Iyer SBJ, Abrams B et al (1997) QuantiBRITE: a new standard for fluorescence quantitation. White Paper, Inc., San Jose

    Google Scholar 

  38. Mcintyre C, Reinin G, Sasaki D, Weller K, (2010) Application note: advantages of the 561-nm (yellow-green) laser on the BD FACSAria III. BD Biosciences

    Google Scholar 

  39. Maecker HT, Trotter J (2006) Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A 69(9):1037–1042. https://doi.org/10.1002/cyto.a.20333

    Article  PubMed  Google Scholar 

  40. Roederer M (2002) Compensation in flow cytometry. Curr Protoc Cytometry 22(1):1.14.11–11.14.20. https://doi.org/10.1002/0471142956.cy0114s22

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the American Heart Association (grant No. 16SDG26940002), National Science Foundation (grant No. 1653925), and National Institute of Child Health and Human Development (NIH grant No. R01HD096737). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. I. Imoukhuede .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fang, Y., Malik, M., England, S.K., Imoukhuede, P.I. (2022). Absolute Quantification of Plasma Membrane Receptors Via Quantitative Flow Cytometry. In: Fiedler, L.R., Pellet-Many, C. (eds) VEGF Signaling. Methods in Molecular Biology, vol 2475. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2217-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2217-9_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2216-2

  • Online ISBN: 978-1-0716-2217-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics