Skip to main content

RNAscope for VEGF-A Detection in Human Tumor Bioptic Specimens

  • Protocol
  • First Online:
VEGF Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2475))

Abstract

Different pro-angiogenic factors, such as vascular endothelial growth factor-A (VEGF-A), have been related to microvascular density, clinicopathologic factors, and poor prognosis in many tumors. VEGF-A binds its receptor 2 (VEGFR2) to induce neo-angiogenesis, a constant hallmark of tumor initiation and progression. Based on VEGF-A/VEGFR2 relevance in tumor angiogenesis, several inhibitors were developed. However, the clinical benefits of anti-angiogenic therapies are limited because tumors activate different mechanisms of drug resistance.

The need for understanding tumor biology, limitation or failure of anti-angiogenic therapies, and the demand for a personalized therapeutic approach has boosted the search for robust biomarkers for patient stratification as responder or non-responder to anti-VEGF therapies.

This chapter presents a detailed protocol to perform chromogenic VEGF-A mRNA detection and quantification in human tumor bioptic specimens using RNAscope technology and RNA-in situ hybridization (ISH) algorithm. RNAscope for VEGF-A detection, even for small amounts, is compatible with precious clinical samples and diagnostic laboratory workflows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferrara N (2016) VEGF and intraocular neovascularization: from discovery to therapy. Transl Vis Sci Technol 5(2):10. https://doi.org/10.1167/tvst.5.2.10

    Article  PubMed  PubMed Central  Google Scholar 

  2. Li X, Eriksson U (2001) Novel VEGF family members: VEGF-B, VEGF-C and VEGF-D. Int J Biochem Cell Biol 33(4):421–426. https://doi.org/10.1016/s1357-2725(01)00027-9

    Article  CAS  PubMed  Google Scholar 

  3. Shibuya M (2003) Vascular endothelial growth factor receptor-2: its unique signaling and specific ligand, VEGF-E. Cancer Sci 94(9):751–756. https://doi.org/10.1111/j.1349-7006.2003.tb01514.x

    Article  CAS  PubMed  Google Scholar 

  4. Murphy JF, Fitzgerald DJ (2001) Vascular endothelial growth factor induces cyclooxygenase-dependent proliferation of endothelial cells via the VEGF-2 receptor. FASEB J 15(9):1667–1669. https://doi.org/10.1096/fj.00-0757fje

    Article  CAS  PubMed  Google Scholar 

  5. Shibuya M (2011) Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2(12):1097–1105. https://doi.org/10.1177/1947601911423031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Takahashi H, Shibuya M (2005) The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond) 109(3):227–241. https://doi.org/10.1042/CS20040370

    Article  CAS  Google Scholar 

  7. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92(6):735–745. https://doi.org/10.1016/s0092-8674(00)81402-6

    Article  CAS  PubMed  Google Scholar 

  8. Gluzman-Poltorak Z, Cohen T, Herzog Y, Neufeld G (2000) Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165 [corrected]. J Biol Chem 275(24):18040–18045. https://doi.org/10.1074/jbc.M909259199

    Article  CAS  PubMed  Google Scholar 

  9. Zhao W, McCallum SA, Xiao Z, Zhang F, Linhardt RJ (2012) Binding affinities of vascular endothelial growth factor (VEGF) for heparin-derived oligosaccharides. Biosci Rep 32(1):71–81. https://doi.org/10.1042/BSR20110077

    Article  CAS  PubMed  Google Scholar 

  10. Tamma R, Annese T, Ruggieri S, Marzullo A, Nico B, Ribatti D (2018) VEGFA and VEGFR2 RNAscope determination in gastric cancer. J Mol Histol 49(4):429–435. https://doi.org/10.1007/s10735-018-9777-0

    Article  CAS  PubMed  Google Scholar 

  11. Bais C, Mueller B, Brady MF, Mannel RS, Burger RA, Wei W, Marien KM, Kockx MM, Husain A, Birrer MJ, Group NRGOGO (2017) Tumor microvessel density as a potential predictive marker for bevacizumab benefit: GOG-0218 biomarker analyses. J Natl Cancer Inst 109(11):djx066. https://doi.org/10.1093/jnci/djx066

    Article  CAS  PubMed Central  Google Scholar 

  12. Scartozzi M, Loretelli C, Galizia E, Mandolesi A, Pistelli M, Bittoni A, Giampieri R, Faloppi L, Bianconi M, Del Prete M, Bianchi F, Belvederesi L, Bearzi I, Cascinu S (2012) Role of vascular endothelial growth factor (VEGF) and VEGF-R genotyping in guiding the metastatic process in pT4a resected gastric cancer patients. PLoS One 7(7):e38192. https://doi.org/10.1371/journal.pone.0038192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sopo M, Anttila M, Muukkonen OT, Yl AHS, Kosma VM, Keski-Nisula L, Sallinen H (2020) Microvessels in epithelial ovarian tumors: high microvessel density is a significant feature of malignant ovarian tumors. Anticancer Res 40(12):6923–6931. https://doi.org/10.21873/anticanres.14716

    Article  CAS  PubMed  Google Scholar 

  14. Nico B, Crivellato E, Guidolin D, Annese T, Longo V, Finato N, Vacca A, Ribatti D (2010) Intussusceptive microvascular growth in human glioma. Clin Exp Med 10(2):93–98. https://doi.org/10.1007/s10238-009-0076-7

    Article  CAS  PubMed  Google Scholar 

  15. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25(4):581–611. https://doi.org/10.1210/er.2003-0027

    Article  CAS  PubMed  Google Scholar 

  16. Claesson-Welsh L, Welsh M (2013) VEGFA and tumour angiogenesis. J Intern Med 273(2):114–127. https://doi.org/10.1111/joim.12019

    Article  CAS  PubMed  Google Scholar 

  17. Zirlik K, Duyster J (2018) Anti-Angiogenics: current situation and future perspectives. Oncol Res Treat 41(4):166–171. https://doi.org/10.1159/000488087

    Article  CAS  PubMed  Google Scholar 

  18. Pezzella F, Gatter KC (2016) Evidence showing that tumors can grow without angiogenesis and can switch between Angiogenic and Nonangiogenic phenotypes. J Natl Cancer Inst 108(8):djw032. https://doi.org/10.1093/jnci/djw032

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kuczynski EA, Vermeulen PB, Pezzella F, Kerbel RS, Reynolds AR (2019) Vessel co-option in cancer. Nat Rev Clin Oncol 16(8):469–493. https://doi.org/10.1038/s41571-019-0181-9

    Article  CAS  PubMed  Google Scholar 

  20. Caporarello N, Lupo G, Olivieri M, Cristaldi M, Cambria MT, Salmeri M, Anfuso CD (2017) Classical VEGF, notch and Ang signalling in cancer angiogenesis, alternative approaches and future directions (review). Mol Med Rep 16(4):4393–4402. https://doi.org/10.3892/mmr.2017.7179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. D'Alessandris QG, Martini M, Cenci T, Capo G, Ricci-Vitiani L, Larocca LM, Pallini R (2015) VEGF isoforms as outcome biomarker for anti-angiogenic therapy in recurrent glioblastoma. Neurology 84(18):1906–1908. https://doi.org/10.1212/WNL.0000000000001543

    Article  PubMed  Google Scholar 

  22. Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5(6):463–466. https://doi.org/10.1097/COH.0b013e32833ed177

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hamburg MA, Collins FS (2010) The path to personalized medicine. N Engl J Med 363(4):301–304. https://doi.org/10.1056/NEJMp1006304

    Article  CAS  PubMed  Google Scholar 

  24. Mayeux R (2004) Biomarkers: potential uses and limitations. NeuroRx 1(2):182–188. https://doi.org/10.1602/neurorx.1.2.182

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bhattacharya S, Mariani TJ (2009) Array of hope: expression profiling identifies disease biomarkers and mechanism. Biochem Soc Trans 37(Pt 4):855–862. https://doi.org/10.1042/BST0370855

    Article  CAS  PubMed  Google Scholar 

  26. Xi X, Li T, Huang Y, Sun J, Zhu Y, Yang Y, Lu ZJ (2017) RNA biomarkers: frontier of precision medicine for cancer. Noncoding RNA 3(1):9. https://doi.org/10.3390/ncrna3010009

    Article  CAS  PubMed Central  Google Scholar 

  27. Yang YC, Di C, Hu B, Zhou M, Liu Y, Song N, Li Y, Umetsu J, Lu ZJ (2015) CLIPdb: a CLIP-seq database for protein-RNA interactions. BMC Genomics 16:51. https://doi.org/10.1186/s12864-015-1273-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu B, Yang YT, Huang Y, Zhu Y, Lu ZJ (2017) POSTAR: a platform for exploring post-transcriptional regulation coordinated by RNA-binding proteins. Nucleic Acids Res 45(D1):D104–D114. https://doi.org/10.1093/nar/gkw888

    Article  CAS  PubMed  Google Scholar 

  29. Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. BioTechniques 39(1):75–85. https://doi.org/10.2144/05391RV01

    Article  CAS  PubMed  Google Scholar 

  30. Belleri M, Paganini G, Coltrini D, Ronca R, Zizioli D, Corsini M, Barbieri A, Grillo E, Calza S, Bresciani R, Maiorano E, Mastropasqua MG, Annese T, Giacomini A, Ribatti D, Casas J, Levade T, Fabrias G, Presta M (2020) Beta-galactosylceramidase promotes melanoma growth via modulation of ceramide metabolism. Cancer Res 80(22):5011–5023. https://doi.org/10.1158/0008-5472.CAN-19-3382

    Article  CAS  PubMed  Google Scholar 

  31. Tamma R, Ingravallo G, Gaudio F, Annese T, Albano F, Ruggieri S, Dicataldo M, Maiorano E, Specchia G, Ribatti D (2020) STAT3, tumor microenvironment, and microvessel density in diffuse large B cell lymphomas. Leuk Lymphoma 61(3):567–574. https://doi.org/10.1080/10428194.2019.1678154

    Article  CAS  PubMed  Google Scholar 

  32. Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A, Wu X, Vo HT, Ma XJ, Luo Y (2012) RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn 14(1):22–29. https://doi.org/10.1016/j.jmoldx.2011.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Annese T, Tamma R, De Giorgis M, Ruggieri S, Maiorano E, Specchia G, Ribatti D (2020) RNAscope dual ISH-IHC technology to study angiogenesis in diffuse large B-cell lymphomas. Histochem Cell Biol 153(3):185–192. https://doi.org/10.1007/s00418-019-01834-z

    Article  CAS  PubMed  Google Scholar 

  34. Siddiqui GK, Maclean AB, Elmasry K, Wong te Fong A, Morris RW, Rashid M, Begent RH, Boxer GM (2011) Immunohistochemical expression of VEGF predicts response to platinum based chemotherapy in patients with epithelial ovarian cancer. Angiogenesis 14(2):155–161. https://doi.org/10.1007/s10456-010-9199-4

    Article  CAS  PubMed  Google Scholar 

  35. Bendardaf R, El-Serafi A, Syrjanen K, Collan Y, Pyrhonen S (2017) The effect of vascular endothelial growth factor-1 expression on survival of advanced colorectal cancer patients. Libyan J Med 12(1):1290741. https://doi.org/10.1080/19932820.2017.1290741

    Article  PubMed  PubMed Central  Google Scholar 

  36. Girolamo F, Errede M, Longo G, Annese T, Alias C, Ferrara G, Morando S, Trojano M, Kerlero de Rosbo N, Uccelli A, Virgintino D (2019) Defining the role of NG2-expressing cells in experimental models of multiple sclerosis. A biofunctional analysis of the neurovascular unit in wild type and NG2 null mice. PLoS One 14(3):e0213508. https://doi.org/10.1371/journal.pone.0213508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Ribatti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Annese, T., Tamma, R., Ribatti, D. (2022). RNAscope for VEGF-A Detection in Human Tumor Bioptic Specimens. In: Fiedler, L.R., Pellet-Many, C. (eds) VEGF Signaling. Methods in Molecular Biology, vol 2475. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2217-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2217-9_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2216-2

  • Online ISBN: 978-1-0716-2217-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics