Skip to main content

Zebrafish Behavioral Assays in Toxicology

  • Protocol
  • First Online:
High-Throughput Screening Assays in Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2474))

Abstract

Zebrafish behavioral assays are commonly used to identify and study environmental stressors that elicit adverse effects on neurobehavior. Behavioral assay platforms are available for multiple life stages (embryonic, juvenile, and adults) and are robust in detecting stressor-induced acute effects on neurodevelopment as well as long term deficits in sensory mechanisms, social behavior, learning, memory, and neurodegenerative diseases. Within this chapter, we present an overview of zebrafish behavioral assays that are commonly used to study environmental neurotoxicants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Truong L, Gonnerman G, Simonich MT, Tanguay RL (2016) Assessment of the developmental and neurotoxicity of the mosquito control larvicide, pyriproxyfen, using embryonic zebrafish. Environ Pollut 218:1089–1093. https://doi.org/10.1016/j.envpol.2016.08.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shen Q, Truong L, Simonich MT, Huang C, Tanguay RL, Dong Q (2020) Rapid well-plate assays for motor and social behaviors in larval zebrafish. Behav Brain Res 391:112625. https://doi.org/10.1016/j.bbr.2020.112625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Best JD, Berghmans S, Hunt JJ, Clarke SC, Fleming A, Goldsmith P, Roach AG (2008) Non-associative learning in larval zebrafish. Neuropsychopharmacology 33(5):1206–1215. https://doi.org/10.1038/sj.npp.1301489

    Article  CAS  PubMed  Google Scholar 

  4. Sobanska M, Scholz S, Nyman A-M, Cesnaitis R, Gutierrez Alonso S, Klüver N, Kühne R, Tyle H, de Knecht J, Dang Z, Lundbergh I, Carlon C, De Coen W (2018) Applicability of the fish embryo acute toxicity (FET) test (OECD 236) in the regulatory context of registration, evaluation, authorisation, and restriction of chemicals (REACH). Environ Toxicol Chem 37(3):657–670. https://doi.org/10.1002/etc.4055

    Article  CAS  PubMed  Google Scholar 

  5. Kokel D, Dunn TW, Ahrens MB, Alshut R, Cheung CYJ, Saint-Amant L, Bruni G, Mateus R, van Ham TJ, Shiraki T, Fukada Y, Kojima D, Yeh J-RJ, Mikut R, von Lintig J, Engert F, Peterson RT (2013) Identification of nonvisual Photomotor response cells in the vertebrate hindbrain. J Neurosci 33(9):3834. https://doi.org/10.1523/JNEUROSCI.3689-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mandrell D, Truong L, Jephson C, Sarker MR, Moore A, Lang C, Simonich MT, Tanguay RL (2012) Automated zebrafish chorion removal and single embryo placement: optimizing throughput of zebrafish developmental toxicity screens. J Lab Autom 17(1):66–74. https://doi.org/10.1177/2211068211432197

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vliet SM, Ho TC, Volz DC (2017) Behavioral screening of the LOPAC(1280) library in zebrafish embryos. Toxicol Appl Pharmacol 329:241–248. https://doi.org/10.1016/j.taap.2017.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hagstrom D, Truong L, Zhang S, Tanguay R, Collins E-MS (2019) Comparative analysis of zebrafish and planarian model Systems for Developmental Neurotoxicity Screens Using an 87-compound library. Toxicol Sci 167(1):15–25. https://doi.org/10.1093/toxsci/kfy180

    Article  CAS  PubMed  Google Scholar 

  9. Garcia GR, Bugel SM, Truong L, Spagnoli S, Tanguay RL (2018) AHR2 required for normal behavioral responses and proper development of the skeletal and reproductive systems in zebrafish. PLoS One 13(3):e0193484. https://doi.org/10.1371/journal.pone.0193484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Geier MC, Chlebowski AC, Truong L, Massey Simonich SL, Anderson KA, Tanguay RL (2018) Comparative developmental toxicity of a comprehensive suite of polycyclic aromatic hydrocarbons. Arch Toxicol 92(2):571–586. https://doi.org/10.1007/s00204-017-2068-9

    Article  CAS  PubMed  Google Scholar 

  11. López-Schier H (2019) Neuroplasticity in the acoustic startle reflex in larval zebrafish. Curr Opin Neurobiol 54:134–139. https://doi.org/10.1016/j.conb.2018.10.004

    Article  CAS  PubMed  Google Scholar 

  12. Beppi C, Straumann D, Bögli SY (2021) A model-based quantification of startle reflex habituation in larval zebrafish. Sci Rep 11(1):846. https://doi.org/10.1038/s41598-020-79923-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wolman MA, Jain RA, Liss L, Granato M (2011) Chemical modulation of memory formation in larval zebrafish. Proc Natl Acad Sci 108(37):15468. https://doi.org/10.1073/pnas.1107156108

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pietri T, Manalo E, Ryan J, Saint-Amant L, Washbourne P (2009) Glutamate drives the touch response through a rostral loop in the spinal cord of zebrafish embryos. Dev Neurobiol 69(12):780–795. https://doi.org/10.1002/dneu.20741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ahmad F, Noldus LPJJ, Tegelenbosch RAJ, Richardson MK (2012) Zebrafish embryos and larvae in behavioural assays, vol 149. Brill Academic Publishers, United Kingdom. https://doi.org/10.1163/1568539X-00003020

    Book  Google Scholar 

  16. Smith LL, Beggs AH, Gupta VA (2013) Analysis of skeletal muscle defects in larval zebrafish by birefringence and touch-evoke escape response assays. J Vis Exp 82:e50925. https://doi.org/10.3791/50925

    Article  Google Scholar 

  17. Colón-Rodríguez A, Uribe-Salazar JM, Weyenberg KB, Sriram A, Quezada A, Kaya G, Jao E, Radke B, Lein PJ, Dennis MY (2020) Assessment of autism zebrafish mutant models using a high-throughput larval phenotyping platform. Front Cell Dev Biol 8:586296. https://doi.org/10.3389/fcell.2020.586296

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ahmad F, Noldus LP, Tegelenbosch RA, Richardson MK (2012) Zebrafish embryos and larvae in behavioural assays. Behaviour 149(10):1241

    Google Scholar 

  19. Brockerhoff SE (2006) Measuring the optokinetic response of zebrafish larvae. Nat Protoc 1(5):2448–2451. https://doi.org/10.1038/nprot.2006.255

    Article  CAS  PubMed  Google Scholar 

  20. LeFauve MK, Rowe CJ, Crowley-Perry M, Wiegand JL, Shapiro AG, Connaughton VP (2021) Using a variant of the optomotor response as a visual defect detection assay in zebrafish. J Biol Methods 8(1):e144. https://doi.org/10.14440/jbm.2021.341

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ganzen L, Venkatraman P, Pang CP, Leung YF, Zhang M (2017) Utilizing zebrafish visual behaviors in drug screening for retinal degeneration. Int J Mol Sci 18(6):1185. https://doi.org/10.3390/ijms18061185

    Article  CAS  PubMed Central  Google Scholar 

  22. Geng Y, Peterson RT (2019) The zebrafish subcortical social brain as a model for studying social behavior disorders. Dis Model Mech 12(8):dmm039446. https://doi.org/10.1242/dmm.039446

    Article  PubMed  PubMed Central  Google Scholar 

  23. Giacomini ACVV, Abreu MS, Giacomini LV, Siebel AM, Zimerman FF, Rambo CL, Mocelin R, Bonan CD, Piato AL, Barcellos LJG (2016) Fluoxetine and diazepam acutely modulate stress induced-behavior. Behav Brain Res 296:301–310. https://doi.org/10.1016/j.bbr.2015.09.027

    Article  CAS  PubMed  Google Scholar 

  24. Ogi A, Licitra R, Naef V, Marchese M, Fronte B, Gazzano A, Santorelli FM (2021) Social preference tests in zebrafish: a systematic review. Front Vet Sci 7:1239

    Article  Google Scholar 

  25. Siregar P, Juniardi S, Audira G, Lai YH, Huang JC, Chen KH, Chen JR, Hsiao CD (2020) Method standardization for conducting innate color preference studies in different zebrafish strains. Biomedicine 8(8):271. https://doi.org/10.3390/biomedicines8080271

    Article  Google Scholar 

  26. Facciol A, Gerlai R (2020) Zebrafish shoaling, its behavioral and neurobiological mechanisms, and its alteration by embryonic alcohol exposure: a review. Front Behav Neurosci 14(174):572175. https://doi.org/10.3389/fnbeh.2020.572175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. García-Jaramillo M, Beaver LM, Truong L, Axton ER, Keller RM, Prater MC, Magnusson KR, Tanguay RL, Stevens JF, Hord NG (2020) Nitrate and nitrite exposure increases anxiety-like behavior and alters brain metabolomic profile in zebrafish. bioRxiv:2020.2009.2021.305979. https://doi.org/10.1101/2020.09.21.305979

  28. Strungaru S-A, Robea MA, Plavan G, Todirascu-Ciornea E, Ciobica A, Nicoara M (2018) Acute exposure to methylmercury chloride induces fast changes in swimming performance, cognitive processes and oxidative stress of zebrafish (Danio rerio) as reference model for fish community. J Trace Elem Med Biol 47:115–123. https://doi.org/10.1016/j.jtemb.2018.01.019

    Article  CAS  PubMed  Google Scholar 

  29. Miller N, Greene K, Dydinski A, Gerlai R (2013) Effects of nicotine and alcohol on zebrafish (Danio rerio) shoaling. Behav Brain Res 240:192–196. https://doi.org/10.1016/j.bbr.2012.11.033

    Article  CAS  PubMed  Google Scholar 

  30. Glazer L, Wells CN, Drastal M, Odamah KA, Galat RE, Behl M, Levin ED (2018) Developmental exposure to low concentrations of two brominated flame retardants, BDE-47 and BDE-99, causes life-long behavioral alterations in zebrafish. Neurotoxicology 66:221–232. https://doi.org/10.1016/j.neuro.2017.09.007

    Article  CAS  PubMed  Google Scholar 

  31. Knecht AL, Truong L, Marvel SW, Reif DM, Garcia A, Lu C, Simonich MT, Teeguarden JG, Tanguay RL (2017) Transgenerational inheritance of neurobehavioral and physiological deficits from developmental exposure to benzo[a]pyrene in zebrafish. Toxicol Appl Pharmacol 329:148–157. https://doi.org/10.1016/j.taap.2017.05.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Truong L, Reif DM, St Mary L, Geier MC, Truong HD, Tanguay RL (2014) Multidimensional in vivo hazard assessment using zebrafish. Toxicol Sci 137(1):212–233. https://doi.org/10.1093/toxsci/kft235

    Article  CAS  PubMed  Google Scholar 

  33. Meguro S, Hosoi S, Hasumura T (2019) High-fat diet impairs cognitive function of zebrafish. Sci Rep 9(1):1–9

    Article  CAS  Google Scholar 

  34. Haghani S, Karia M, Cheng RK, Mathuru AS (2019) An automated assay system to study novel tank induced anxiety. Front Behav Neurosci 13:180. https://doi.org/10.3389/fnbeh.2019.00180

    Article  PubMed  PubMed Central  Google Scholar 

  35. Levin ED (2011) Zebrafish assessment of cognitive improvement and anxiolysis: filling the gap between in vitro and rodent models for drug development. Rev Neurosci 22(1):75–84. https://doi.org/10.1515/RNS.2011.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reif DM, Truong L, Mandrell D, Marvel S, Zhang G, Tanguay RL (2016) High-throughput characterization of chemical-associated embryonic behavioral changes predicts teratogenic outcomes. Arch Toxicol 90(6):1459–1470. https://doi.org/10.1007/s00204-015-1554-1

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robyn L. Tanguay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dasgupta, S., Simonich, M.T., Tanguay, R.L. (2022). Zebrafish Behavioral Assays in Toxicology. In: Zhu, H., Xia, M. (eds) High-Throughput Screening Assays in Toxicology. Methods in Molecular Biology, vol 2474. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2213-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2213-1_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2212-4

  • Online ISBN: 978-1-0716-2213-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics