Skip to main content

Metastasis Model to Test the Role of Notch Signaling in Prostate Cancer

  • Protocol
  • First Online:
Notch Signaling Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2472))

Abstract

Distant metastasis is the main cause of death in prostate cancer patients. Notch signaling plays an important role in driving prostate cancer aggressiveness and metastasis. In this chapter, we describe a protocol to measure prostate cancer metastatic colonization, incidences of metastasis, accurately quantify the burden of metastasis, and test the role of NOTCH1 receptor on prostate cancer metastatic colonization and homing to distant sites. The metastasis model presented here is established by intracardiac injection of control human prostate cancer cells and NOTCH1 downregulated cells. The cells are engineered to express both red fluorescent protein (RFP) and luciferase. In this model, whole body bioluminescence imaging, high-resolution, and quantitative fluorescence imaging are utilized for quantitative assessment of metastatic colonization and metastasis burden. Further, histopathology analyses of diverse metastatic organs are performed. This model is a powerful and versatile tool to investigate the mechanisms underlying the function of NOTCH receptors in metastatic colonization in prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics, 2021. CA Cancer J Clin 71:7–33

    Article  Google Scholar 

  2. Sharifi N, Dahut WL, Steinberg SM et al (2005) A retrospective study of the time to clinical endpoints for advanced prostate cancer. BJU Int 96:985–989

    Article  Google Scholar 

  3. Fizazi K, Shore N, Tammela TL et al (2019) Darolutamide in nonmetastatic, castration-resistant prostate cancer. N Engl J Med 380:1235–1246

    Article  CAS  Google Scholar 

  4. Scher HI, Fizazi K, Saad F et al (2012) Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 367:1187–1197

    Article  CAS  Google Scholar 

  5. Beer TM, Armstrong AJ, Rathkopf DE et al (2014) Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med 371:424–433

    Article  CAS  Google Scholar 

  6. de Bono JS, Logothetis CJ, Molina A et al (2011) Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 364:1995–2005

    Article  Google Scholar 

  7. Rathkopf DE, Antonarakis ES, Shore ND et al (2017) Safety and antitumor activity of apalutamide (ARN-509) in metastatic castration-resistant prostate cancer with and without prior abiraterone acetate and prednisone. Clin Cancer Res 23:3544–3551

    Article  CAS  Google Scholar 

  8. Berthold DR, Pond GR, Soban F, de Wit R, Eisenberger M, Tannock IF (2008) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the TAX 327 study. J Clin Oncol 26:242–245

    Article  CAS  Google Scholar 

  9. de Bono JS, Oudard S, Ozguroglu M et al (2010) Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376:1147–1154

    Article  CAS  Google Scholar 

  10. Mateo J, Carreira S, Sandhu S et al (2015) DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 373:1697–1708

    Article  CAS  Google Scholar 

  11. Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422

    Article  CAS  Google Scholar 

  12. Antonarakis ES, Piulats JM, Gross-Goupil M et al (2020) Pembrolizumab for treatment-refractory metastatic castration-resistant prostate cancer: multicohort, open-label phase II KEYNOTE-199 study. J Clin Oncol 38:395–405

    Article  CAS  Google Scholar 

  13. Litwin MS, Tan HJ (2017) The diagnosis and treatment of prostate cancer: a review. JAMA 317:2532–2542

    Article  Google Scholar 

  14. Matulewicz RS, Weiner AB, Schaeffer EM (2017) Active surveillance for prostate cancer. JAMA 318:2152

    Article  Google Scholar 

  15. Liu S, Shen M, Hsu EC et al (2021) Discovery of PTN as a serum-based biomarker of pro-metastatic prostate cancer. Br J Cancer 124:896–900

    Article  CAS  Google Scholar 

  16. Liu S, Garcia-Marques F, Zhang CA et al (2021) Discovery of CASP8 as a potential biomarker for high-risk prostate cancer through a high-multiplex immunoassay. Sci Rep 11:7612

    Article  CAS  Google Scholar 

  17. Radtke F, Raj K (2003) The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 3:756–767

    Article  CAS  Google Scholar 

  18. Kwon OJ, Zhang L, Wang J et al (2016) Notch promotes tumor metastasis in a prostate-specific Pten-null mouse model. J Clin Invest 126:2626–2641

    Article  Google Scholar 

  19. Reedijk M, Odorcic S, Chang L et al (2005) High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 65:8530–8537

    Article  CAS  Google Scholar 

  20. Valdez JM, Zhang L, Su Q et al (2012) Notch and TGFbeta form a reciprocal positive regulatory loop that suppresses murine prostate basal stem/progenitor cell activity. Cell Stem Cell 11:676–688

    Article  CAS  Google Scholar 

  21. Stoyanova T, Riedinger M, Lin S et al (2016) Activation of Notch1 synergizes with multiple pathways in promoting castration-resistant prostate cancer. Proc Natl Acad Sci U S A 113:E6457–E6E66

    Article  CAS  Google Scholar 

  22. Yang Y, Ahn YH, Gibbons DL et al (2011) The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200-dependent pathway in mice. J Clin Invest 121:1373–1385

    Article  CAS  Google Scholar 

  23. Ranganathan P, Weaver KL, Capobianco AJ (2011) Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer 11:338–351

    Article  CAS  Google Scholar 

  24. Wieland E, Rodriguez-Vita J, Liebler SS et al (2017) Endothelial Notch1 activity facilitates metastasis. Cancer Cell 31:355–367

    Article  CAS  Google Scholar 

  25. Ciofani M, Zuniga-Pflucker JC (2005) Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism. Nat Immunol 6:881–888

    Article  CAS  Google Scholar 

  26. Sanchez-Martin M, Ferrando A (2017) The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia. Blood 129:1124–1133

    Article  CAS  Google Scholar 

  27. Aster JC, Pear WS, Blacklow SC (2017) The varied roles of Notch in cancer. Annu Rev Pathol 12:245–275

    Article  CAS  Google Scholar 

  28. Nowell CS, Radtke F (2017) Notch as a tumour suppressor. Nat Rev Cancer 17:145–159

    Article  CAS  Google Scholar 

  29. Koch U, Radtke F (2010) Notch signaling in solid tumors. Curr Top Dev Biol 92:411–455

    Article  CAS  Google Scholar 

  30. Rice MA, Hsu EC, Aslan M, Ghoochani A, Su A, Stoyanova T (2019) Loss of Notch1 activity inhibits prostate cancer growth and metastasis and sensitizes prostate cancer cells to antiandrogen therapies. Mol Cancer Ther 18:1230–1242

    Article  CAS  Google Scholar 

  31. Kwon OJ, Valdez JM, Zhang L et al (2014) Increased Notch signalling inhibits anoikis and stimulates proliferation of prostate luminal epithelial cells. Nat Commun 5:4416

    Article  CAS  Google Scholar 

  32. Bin Hafeez B, Adhami VM, Asim M et al (2009) Targeted knockdown of Notch1 inhibits invasion of human prostate cancer cells concomitant with inhibition of matrix metalloproteinase-9 and urokinase plasminogen activator. Clin Cancer Res 15:452–459

    Article  CAS  Google Scholar 

  33. Gingrich JR, Barrios RJ, Morton RA et al (1996) Metastatic prostate cancer in a transgenic mouse. Cancer Res 56:4096–4102

    PubMed  CAS  Google Scholar 

  34. Cui D, Dai J, Keller JM, Mizokami A, Xia S, Keller ET (2015) Notch pathway inhibition using PF-03084014, a gamma-secretase inhibitor (GSI), enhances the antitumor effect of docetaxel in prostate cancer. Clin Cancer Res 21:4619–4629

    Article  CAS  Google Scholar 

  35. Domingo-Domenech J, Vidal SJ, Rodriguez-Bravo V et al (2012) Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell 22:373–388

    Article  CAS  Google Scholar 

  36. Hsu EC, Rice MA, Bermudez A et al (2020) Trop2 is a driver of metastatic prostate cancer with neuroendocrine phenotype via PARP1. Proc Natl Acad Sci U S A 117:2032–2042

    Article  CAS  Google Scholar 

  37. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    Article  CAS  Google Scholar 

  38. Buckup M, Rice MA, Hsu EC et al (2021) Plectin is a regulator of prostate cancer growth and metastasis. Oncogene 40:663–676

    Article  CAS  Google Scholar 

Download references

Acknowledgments

T.S. is supported by the Canary Foundation, the National Institutes of Health/National Cancer Institute (NCI) R37CA240822 and R01CA244281. Shiqin Liu and En-chi Hsu contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya Stoyanova .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

A video demonstrating the intracardiac injection procedure (MOV 48392 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, S., Hsu, Ec., Shen, M., Aslan, M., Stoyanova, T. (2022). Metastasis Model to Test the Role of Notch Signaling in Prostate Cancer. In: Jia, D. (eds) Notch Signaling Research. Methods in Molecular Biology, vol 2472. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2201-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2201-8_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2200-1

  • Online ISBN: 978-1-0716-2201-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics