Skip to main content

Image-Based Single-Molecule Analysis of Notch-Dependent Transcription in Its Natural Context

  • Protocol
  • First Online:
Notch Signaling Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2472))

Abstract

Notch signaling is crucial to animal development and homeostasis. Notch triggers the transcription of its target genes, which produce diverse outcomes depending on context. The high resolution and spatially precise assessment of Notch-dependent transcription is essential for understanding how Notch operates normally in its native context in vivo and how Notch defects lead to pathogenesis. Here we present biological and computational methods to assess Notch-dependent transcriptional activation in stem cells within their niche, focusing on germline stem cells in the nematode Caenorhabditis elegans. Specifically, we describe visualization of single RNAs in fixed gonads using single-molecule RNA fluorescence in situ hybridization (smFISH), live imaging of transcriptional bursting in the intact organism using the MS2 system, and custom-made MATLAB codes, implementing new image processing algorithms to capture the spatiotemporal patterns of Notch-dependent transcriptional activation. These methods allow a powerful analysis of in vivo transcriptional activation and its dynamics in a whole tissue. Our methods can be adapted to essentially any tissue or cell type for any transcript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siebel C, Lendahl U (2017) Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 97:1235–1294. https://doi.org/10.1152/physrev.00005.2017

    Article  PubMed  CAS  Google Scholar 

  2. Kopan R, Ilagan MX (2009) The canonical notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233. https://doi.org/10.1016/j.cell.2009.03.045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Gazave E, Lapébie P, Richards GS, Brunet F, Ereskovsky AV, Degnan BM, Borchiellini C, Vervoort M, Renard E (2009) Origin and evolution of the Notch signalling pathway: an overview from eukaryotic genomes. BMC Evol Biol 9:249. https://doi.org/10.1186/1471-2148-9-249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Imayoshi I, Shimojo H, Sakamoto M, Ohtsuka T, Kageyama R (2013) Genetic visualization of Notch signaling in mammalian neurogenesis. Cell Mol Life Sci 70:2045–2057. https://doi.org/10.1007/s00018-012-1151-x

    Article  PubMed  CAS  Google Scholar 

  5. Bolós V, Grego-Bessa J, de la Pompa JL (2007) Notch signaling in development and cancer. Endocr Rev 28:339–363. https://doi.org/10.1210/er.2006-0046

    Article  PubMed  CAS  Google Scholar 

  6. Aquila G, Pannella M, Morelli MB, Caliceti C, Fortini C, Rizzo P, Ferrari R (2013) The role of Notch pathway in cardiovascular diseases. Glob Cardiol Sci Pract 2013:364–371. https://doi.org/10.5339/gscp.2013.44

    Article  PubMed  PubMed Central  Google Scholar 

  7. MacGrogan D, Nus M, de la Pompa JL (2010) Chapter eleven - notch signaling in cardiac development and disease. In: Kopan R (ed) Current topics in developmental biology. Academic Press, New York, pp 333–365

    Google Scholar 

  8. de la Pompa JL, Epstein JA (2012) Coordinating tissue interactions: Notch signaling in cardiac development and disease. Dev Cell 22:244–254. https://doi.org/10.1016/j.devcel.2012.01.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. High FA, Epstein JA (2008) The multifaceted role of Notch in cardiac development and disease. Nat Rev Genet 9:49–61. https://doi.org/10.1038/nrg2279

    Article  PubMed  CAS  Google Scholar 

  10. Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7:678–689. https://doi.org/10.1038/nrm2009

    Article  PubMed  CAS  Google Scholar 

  11. Kimble J, Crittenden SL (2007) Controls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans. Annu Rev Cell Dev Biol 23:405–433. https://doi.org/10.1146/annurev.cellbio.23.090506.123326

    Article  PubMed  CAS  Google Scholar 

  12. Sato C, Zhao G, Ilagan MX (2012) An overview of Notch signaling in adult tissue renewal and maintenance. Curr Alzheimer Res 9:227–240

    Article  CAS  Google Scholar 

  13. Kershner AM, Shin H, Hansen TJ, Kimble J (2014) Discovery of two GLP-1/Notch target genes that account for the role of GLP-1/Notch signaling in stem cell maintenance. Proc Natl Acad Sci U S A 111:3739–3744. https://doi.org/10.1073/pnas.1401861111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Shi Y, Shu B, Yang R, Xu Y, Xing B, Liu J, Chen L, Qi S, Liu X, Wang P, Tang J, Xie J (2015) Wnt and Notch signaling pathway involved in wound healing by targeting c-Myc and Hes1 separately. Stem Cell Res Ther 6:120. https://doi.org/10.1186/s13287-015-0103-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Falo-Sanjuan J, Bray SJ (2020) Decoding the Notch signal. Develop Growth Differ 62:4–14. https://doi.org/10.1111/dgd.12644

    Article  Google Scholar 

  16. Hoyle NP, Ish-Horowicz D (2013) Transcript processing and export kinetics are rate-limiting steps in expressing vertebrate segmentation clock genes. PNAS 110:E4316–E4324. https://doi.org/10.1073/pnas.1308811110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Housden BE, Fu AQ, Krejci A, Bernard F, Fischer B, Tavaré S, Russell S, Bray SJ (2013) Transcriptional dynamics elicited by a short pulse of notch activation involves feed-forward regulation by E(spl)/Hes genes. PLoS Genet 9:e1003162. https://doi.org/10.1371/journal.pgen.1003162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Yoon K, Gaiano N (2005) Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci 8:709–715. https://doi.org/10.1038/nn1475

    Article  PubMed  CAS  Google Scholar 

  19. Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP, Gallahan D, Closson V, Kitajewski J, Callahan R, Smith GH, Stark KL, Gridley T (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14:1343–1352

    Article  CAS  Google Scholar 

  20. Batista MR, Diniz P, Torres A, Murta D, Lopes-da-Costa L, Silva E (2020) Notch signaling in mouse blastocyst development and hatching. BMC Dev Biol 20:9. https://doi.org/10.1186/s12861-020-00216-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lee C, Sorensen EB, Lynch TR, Kimble J (2016) C. elegans GLP-1/Notch activates transcription in a probability gradient across the germline stem cell pool. eLife 5:e18370. https://doi.org/10.7554/eLife.18370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Crittenden SL, Lee C, Mohanty I, Battula S, Knobel K, Kimble J (2019) Sexual dimorphism of niche architecture and regulation of the Caenorhabditis elegans germline stem cell pool. MBoC 30:1757–1769. https://doi.org/10.1091/mbc.E19-03-0164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lee C, Seidel H, Lynch T, Sorensen E, Crittenden S, Kimble J (2017) Single-molecule RNA Fluorescence in situ Hybridization (smFISH) in Caenorhabditis elegans. Bio-Protocol 7:e2357. https://doi.org/10.21769/BioProtoc.2357

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lee C, Shin H, Kimble J (2019) Dynamics of Notch-dependent transcriptional bursting in its native context. Dev Cell 50:426–435.e4. https://doi.org/10.1016/j.devcel.2019.07.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5:877–879. https://doi.org/10.1038/nmeth.1253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lee C, Roberts SE, Gladfelter AS (2016) Quantitative spatial analysis of transcripts in multinucleate cells using single-molecule FISH. Methods 98:124. https://doi.org/10.1016/j.ymeth.2015.12.007

    Article  PubMed  CAS  Google Scholar 

  27. Lee C, Zhang H, Baker AE, Occhipinti P, Borsuk ME, Gladfelter AS (2013) Protein aggregation behavior regulates cyclin transcript localization and cell-cycle control. Dev Cell 25:572–584. https://doi.org/10.1016/j.devcel.2013.05.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lee C, Occhipinti P, Gladfelter AS (2015) PolyQ-dependent RNA-protein assemblies control symmetry breaking. J Cell Biol 208:533–544. https://doi.org/10.1083/jcb.201407105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Cinquin O, Crittenden SL, Morgan DE, Kimble J (2010) Progression from a stem cell-like state to early differentiation in the C. elegans germ line. Proc Natl Acad Sci U S A 107:2048–2053. https://doi.org/10.1073/pnas.0912704107

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li F, Jianhua Z, Lee CH, Gina K, Fang L, Petersen AJ, Evi L, Anderson CL, Orland KM, Robertson GA, Eckhardt LL, January CT, Kamp TJ (2021) Long QT syndrome 2 PAS domain variant induces hERG1a/1b subunit imbalance in patient-specific iPSC-cardiomyocytes. Circ Arrhythm Electrophysiol 4:e009343. https://doi.org/10.1161/CIRCEP.120.009343

    Article  CAS  Google Scholar 

  31. Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2:437–445. https://doi.org/10.1016/S1097-2765(00)80143-4

    Article  PubMed  CAS  Google Scholar 

  32. Larson DR, Singer RH, Zenklusen D (2009) A single molecule view of gene expression. Trends Cell Biol 19:630–637. https://doi.org/10.1016/j.tcb.2009.08.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Corrigan AM, Chubb JR (2014) Regulation of transcriptional bursting by a naturally oscillating signal. Curr Biol 24:205–211. https://doi.org/10.1016/j.cub.2013.12.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Li C, Cesbron F, Oehler M, Brunner M, Höfer T (2018) Frequency modulation of transcriptional bursting enables sensitive and rapid gene regulation. Cells 6:409–423.e11. https://doi.org/10.1016/j.cels.2018.01.012

    Article  CAS  Google Scholar 

  35. Kafri P, Hasenson SE, Kanter I, Sheinberger J, Kinor N, Yunger S, Shav-Tal Y (2016) Quantifying β-catenin subcellular dynamics and cyclin D1 mRNA transcription during Wnt signaling in single living cells. eLife 5:e16748. https://doi.org/10.7554/eLife.16748

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kim E, Sun L, Gabel CV, Fang-Yen C (2013) Long-term imaging of Caenorhabditis elegans using nanoparticle-mediated immobilization. PLoS One 8:e53419. https://doi.org/10.1371/journal.pone.0053419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

CHL was supported by the American Heart Association (18POST34030263). TRL was supported by the National Science Foundation Graduate Research Fellowship Program (Grant No. DGE1256259). JK is grateful to NIH R01 GM134119 for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChangHwan Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lee, C., Lynch, T., Crittenden, S.L., Kimble, J. (2022). Image-Based Single-Molecule Analysis of Notch-Dependent Transcription in Its Natural Context. In: Jia, D. (eds) Notch Signaling Research. Methods in Molecular Biology, vol 2472. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2201-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2201-8_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2200-1

  • Online ISBN: 978-1-0716-2201-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics