Skip to main content

Construction of the UDP-Glucose Biosynthetic Enzyme Gene Coexpression Plasmid for Prunasin Production in Escherichia coli

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2469))

Abstract

Microbial production of bioactive glucosides using uridine diphosphate glucosyltransferase (UGT) is an efficient glucoside production method. Here, we describe a detailed method for the construction of a UDP-glucose biosynthetic enzyme gene coexpression plasmid, that is, pCDF-PGP and the microbial production of prunasin from racemic mandelonitrile using Escherichia coli possessing UGT85A47 obtained from Japanese apricot. Furthermore, this constructed vector can find application in the production of various other glucosides that utilize other UGTs and aglycons.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kytidou K, Artola M, Overkleeft HS, Aerts JMFG (2020) Plant glycosides and glycosidases: a treasure-trove for therapeutics. Front Plant Sci 11:357. https://doi.org/10.3389/fpls.2020.00357

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yamaguchi T, Yamamoto K, Asano Y (2014) Identification and characterization of CYP79D16 and CYP71AN24 catalyzing the first and second steps in L-phenylalanine-derived cyanogenic glycoside biosynthesis in the Japanese apricot, Prunus mume Sieb. et Zucc. Plant Mol Biol 86:215–223

    Article  CAS  Google Scholar 

  3. Fukuta Y, Nanda S, Kato Y, Yurimoto H, Sakai Y, Komeda H, Asano Y (2011) Characterization of a new (R)-hydroxynitrile lyase from the Japanese apricot Prunus mume and cDNA cloning and secretory expression of one of the isozymes in Pichia pastoris. Biosci Biotechnol Biochem 75:214–220

    Article  CAS  Google Scholar 

  4. Nanda S, Kato Y, Asano Y (2005) A new (R)-hydroxynitrile lyase from Prunus mume: asymmetric synthesis of cyanohydrins. Tetrahedron 61:10908–10916

    Article  CAS  Google Scholar 

  5. Yamaguchi T, Asano Y (2018) Prunasin production using engineered Escherichia coli expressing UGT85A47 from Japanese apricot and UDP-glucose biosynthetic enzyme genes. Biosci Biotechnol Biochem 82:2021–2029

    Article  CAS  Google Scholar 

  6. Paoletti I, Gregorio VD, Baroni A, Tufano MA, Donnarumma G, Perez JJ (2013) Amygdalin analogues inhibit IFN-γ signalling and reduce the inflammatory response in human epidermal keratinocytes. Inflammation 36:1316–1326

    Article  CAS  Google Scholar 

  7. Mizushina Y, Takahashi N, Ogawa A, Tsurugaya K, Koshino H, Takemura M, Yoshida S, Matsukage A, Sugawara F, Sakaguchi K (1999) The cyanogenic glucoside, prunasin (D-mandelonitrile-β-D-glucoside), is a novel inhibitor of DNA polymerase β. J Biochem 126:430–436

    Article  CAS  Google Scholar 

  8. Bennett BD, Kimball EH, Gao M, Osterhout R, Dien SJV, Rabinowitz JD (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5:593–599

    Article  CAS  Google Scholar 

  9. Gibson D, Young L, Chuang RY, Ventor JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Exploratory Research for Advanced Technology Program (ERATO) Asano Active Enzyme Molecule Project from the Japan Science and Technology Agency (Grant number: JPMJER1102). This research was also supported in part by a grant-in-aid for Scientific Research (S) from The Japan Society for Promotion of Sciences (Grant number: 17H06169) to Y. Asano.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhisa Asano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yamaguchi, T., Asano, Y. (2022). Construction of the UDP-Glucose Biosynthetic Enzyme Gene Coexpression Plasmid for Prunasin Production in Escherichia coli . In: Fett-Neto, A.G. (eds) Plant Secondary Metabolism Engineering. Methods in Molecular Biology, vol 2469. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2185-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2185-1_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2184-4

  • Online ISBN: 978-1-0716-2185-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics