Skip to main content

Genetic Methods for Cellular Manipulation in C. elegans

  • Protocol
  • First Online:
C. elegans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2468))

Abstract

Neuron manipulation in vivo by ablation, activation or inactivation, and regulation of gene expression is essential for dissecting nervous system function. Here we describe genetic means for neuron manipulation in the nematode C. elegans, and provide protocols for generating transgenic animals containing these genetic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Avery L, Horvitz HR (1989) Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans. Neuron 3(4):473–485

    Article  CAS  PubMed  Google Scholar 

  2. Bargmann CI, Hartwieg E, Horvitz HR (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74(3):515–527

    Article  CAS  PubMed  Google Scholar 

  3. Bargmann CI, Horvitz HR (1991) Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7(5):729–742

    Article  CAS  PubMed  Google Scholar 

  4. Chalfie M, Sulston JE, White JG, Southgate E, Thomson JN, Brenner S (1985) The neural circuit for touch sensitivity in Caenorhabditis elegans. J Neurosci 5(4):956–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fang-Yen C, Gabel CV, Samuel AD, Bargmann CI, Avery L (2012) Laser microsurgery in Caenorhabditis elegans. Methods Cell Biol 107:177–206. https://doi.org/10.1016/B978-0-12-394620-1.00006-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chelur DS, Chalfie M (2007) Targeted cell killing by reconstituted caspases. Proc Natl Acad Sci U S A 104(7):2283–2288. https://doi.org/10.1073/pnas.0610877104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fares H, Greenwald I (2001) Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 159(1):133–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shaham S, Horvitz HR (1996) Developing Caenorhabditis elegans neurons may contain both cell-death protective and killer activities. Genes Dev 10(5):578–591

    Article  CAS  PubMed  Google Scholar 

  9. Conradt B, Horvitz HR (1998) The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93(4):519–529

    Article  CAS  PubMed  Google Scholar 

  10. Procko C, Lu Y, Shaham S (2011) Glia delimit shape changes of sensory neuron receptive endings in C. elegans. Development 138(7):1371–1381. https://doi.org/10.1242/dev.058305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harbinder S, Tavernarakis N, Herndon LA, Kinnell M, Xu SQ, Fire A, Driscoll M (1997) Genetically targeted cell disruption in Caenorhabditis elegans. Proc Natl Acad Sci U S A 94(24):13128–13133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Treinin M, Chalfie M (1995) A mutated acetylcholine receptor subunit causes neuronal degeneration in C. elegans. Neuron 14(4):871–877

    Article  CAS  PubMed  Google Scholar 

  13. Kobayashi J, Shidara H, Morisawa Y, Kawakami M, Tanahashi Y, Hotta K, Oka K (2013) A method for selective ablation of neurons in C. elegans using the phototoxic fluorescent protein, KillerRed. Neurosci Lett 548:261–264. https://doi.org/10.1016/j.neulet.2013.05.053

    Article  CAS  PubMed  Google Scholar 

  14. Qi YB, Garren EJ, Shu X, Tsien RY, Jin Y (2012) Photo-inducible cell ablation in Caenorhabditis elegans using the genetically encoded singlet oxygen generating protein miniSOG. Proc Natl Acad Sci U S A 109(19):7499–7504. https://doi.org/10.1073/pnas.1204096109

    Article  PubMed  PubMed Central  Google Scholar 

  15. Williams DC, Bejjani RE, Ramirez PM, Coakley S, Kim SA, Lee H, Wen Q, Samuel A, Lu H, Hilliard MA, Hammarlund M (2013) Rapid and permanent neuronal inactivation in vivo via subcellular generation of reactive oxygen with the use of KillerRed. Cell Rep 5(2):553–563. https://doi.org/10.1016/j.celrep.2013.09.023

    Article  CAS  PubMed  Google Scholar 

  16. Dickinson DJ, Ward JD, Reiner DJ, Goldstein B (2013) Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10(10):1028–1034. https://doi.org/10.1038/nmeth.2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Esposito G, Di Schiavi E, Bergamasco C, Bazzicalupo P (2007) Efficient and cell specific knock-down of gene function in targeted C. elegans neurons. Gene 395(1-2):170–176. https://doi.org/10.1016/j.gene.2007.03.002

    Article  CAS  PubMed  Google Scholar 

  18. Qadota H, Inoue M, Hikita T, Koppen M, Hardin JD, Amano M, Moerman DG, Kaibuchi K (2007) Establishment of a tissue-specific RNAi system in C. elegans. Gene 400(1-2):166–173. https://doi.org/10.1016/j.gene.2007.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Armenti ST, Nance J (2012) Adherens junctions in C. elegans embryonic morphogenesis. Subcell Biochem 60:279–299. https://doi.org/10.1007/978-94-007-4186-7_12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang L, Ward JD, Cheng Z, Dernburg AF (2015) The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans. Development 142(24):4374–4384. https://doi.org/10.1242/dev.129635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lopez-Cruz A, Sordillo A, Pokala N, Liu Q, McGrath PT, Bargmann CI (2019) Parallel multimodal circuits control an innate foraging behavior. Neuron 102(2):407–419 e408. https://doi.org/10.1016/j.neuron.2019.01.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rabinowitch I, Chatzigeorgiou M, Zhao B, Treinin M, Schafer WR (2014) Rewiring neural circuits by the insertion of ectopic electrical synapses in transgenic C. elegans. Nat Commun 5:4442. https://doi.org/10.1038/ncomms5442

    Article  CAS  PubMed  Google Scholar 

  23. Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger MA, Belfort GM, Lin Y, Monahan PE, Boyden ES (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463(7277):98–102. https://doi.org/10.1038/nature08652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Han X, Boyden ES (2007) Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2(3):e299. https://doi.org/10.1371/journal.pone.0000299

    Article  PubMed  PubMed Central  Google Scholar 

  25. Husson SJ, Liewald JF, Schultheis C, Stirman JN, Lu H, Gottschalk A (2012) Microbial light-activatable proton pumps as neuronal inhibitors to functionally dissect neuronal networks in C. elegans. PLoS One 7(7):e40937. https://doi.org/10.1371/journal.pone.0040937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kato HE, Inoue K, Abe-Yoshizumi R, Kato Y, Ono H, Konno M, Hososhima S, Ishizuka T, Hoque MR, Kunitomo H, Ito J, Yoshizawa S, Yamashita K, Takemoto M, Nishizawa T, Taniguchi R, Kogure K, Maturana AD, Iino Y, Yawo H, Ishitani R, Kandori H, Nureki O (2015) Structural basis for Na(+) transport mechanism by a light-driven Na(+) pump. Nature 521(7550):48–53. https://doi.org/10.1038/nature14322

    Article  CAS  PubMed  Google Scholar 

  27. Kawano T, Po MD, Gao S, Leung G, Ryu WS, Zhen M (2011) An imbalancing act: gap junctions reduce the backward motor circuit activity to bias C. elegans for forward locomotion. Neuron 72(4):572–586. https://doi.org/10.1016/j.neuron.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  28. Kunkel MT, Johnstone DB, Thomas JH, Salkoff L (2000) Mutants of a temperature-sensitive two-P domain potassium channel. J Neurosci 20(20):7517–7524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Okazaki A, Sudo Y, Takagi S (2012) Optical silencing of C. elegans cells with arch proton pump. PLoS One 7(5):e35370. https://doi.org/10.1371/journal.pone.0035370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pokala N, Liu Q, Gordus A, Bargmann CI (2014) Inducible and titratable silencing of Caenorhabditis elegans neurons in vivo with histamine-gated chloride channels. Proc Natl Acad Sci U S A 111(7):2770–2775. https://doi.org/10.1073/pnas.1400615111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reiner DJ, Weinshenker D, Tian H, Thomas JH, Nishiwaki K, Miwa J, Gruninger T, Leboeuf B, Garcia LR (2006) Behavioral genetics of caenorhabditis elegans unc-103-encoded erg-like K(+) channel. J Neurogenet 20(1–2):41–66. https://doi.org/10.1080/01677060600788826

    Article  CAS  PubMed  Google Scholar 

  32. Stirman JN, Crane MM, Husson SJ, Wabnig S, Schultheis C, Gottschalk A, Lu H (2011) Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans. Nat Methods 8(2):153–158. https://doi.org/10.1038/nmeth.1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446(7136):633–639. https://doi.org/10.1038/nature05744

    Article  CAS  PubMed  Google Scholar 

  34. Macosko EZ, Pokala N, Feinberg EH, Chalasani SH, Butcher RA, Clardy J, Bargmann CI (2009) A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458(7242):1171–1175. https://doi.org/10.1038/nature07886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino de Laureto P, DasGupta BR, Montecucco C (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359(6398):832–835. https://doi.org/10.1038/359832a0

    Article  CAS  PubMed  Google Scholar 

  36. Airan RD, Thompson KR, Fenno LE, Bernstein H, Deisseroth K (2009) Temporally precise in vivo control of intracellular signalling. Nature 458(7241):1025–1029. https://doi.org/10.1038/nature07926

    Article  CAS  PubMed  Google Scholar 

  37. Avelar GM, Schumacher RI, Zaini PA, Leonard G, Richards TA, Gomes SL (2014) A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus. Curr Biol 24(11):1234–1240. https://doi.org/10.1016/j.cub.2014.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268. https://doi.org/10.1038/nn1525

    Article  CAS  PubMed  Google Scholar 

  39. Edwards SL, Charlie NK, Milfort MC, Brown BS, Gravlin CN, Knecht JE, Miller KG (2008) A novel molecular solution for ultraviolet light detection in Caenorhabditis elegans. PLoS Biol 6(8):e198. https://doi.org/10.1371/journal.pbio.0060198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Erbguth K, Prigge M, Schneider F, Hegemann P, Gottschalk A (2012) Bimodal activation of different neuron classes with the spectrally red-shifted channelrhodopsin chimera C1V1 in Caenorhabditis elegans. PLoS One 7(10):e46827. https://doi.org/10.1371/journal.pone.0046827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao S, Nagpal J, Schneider MW, Kozjak-Pavlovic V, Nagel G, Gottschalk A (2015) Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp. Nat Commun 6:8046. https://doi.org/10.1038/ncomms9046

    Article  PubMed  Google Scholar 

  42. Ibsen S, Tong A, Schutt C, Esener S, Chalasani SH (2015) Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nat Commun 6:8264. https://doi.org/10.1038/ncomms9264

    Article  CAS  PubMed  Google Scholar 

  43. Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, Morimoto TK, Chuong AS, Carpenter EJ, Tian Z, Wang J, Xie Y, Yan Z, Zhang Y, Chow BY, Surek B, Melkonian M, Jayaraman V, Constantine-Paton M, Wong GK, Boyden ES (2014) Independent optical excitation of distinct neural populations. Nat Methods 11(3):338–346. https://doi.org/10.1038/nmeth.2836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu J, Ward A, Gao J, Dong Y, Nishio N, Inada H, Kang L, Yu Y, Ma D, Xu T, Mori I, Xie Z, Xu XZ (2010) C. elegans phototransduction requires a G protein-dependent cGMP pathway and a taste receptor homolog. Nat Neurosci 13(6):715–722. https://doi.org/10.1038/nn.2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15(24):2279–2284. https://doi.org/10.1016/j.cub.2005.11.032

    Article  CAS  PubMed  Google Scholar 

  46. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100(24):13940–13945. https://doi.org/10.1073/pnas.1936192100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Okochi Y, Kimura KD, Ohta A, Mori I (2005) Diverse regulation of sensory signaling by C. elegans nPKC-epsilon/eta TTX-4. EMBO J 24(12):2127–2137. https://doi.org/10.1038/sj.emboj.7600697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Promel S, Fiedler F, Binder C, Winkler J, Schoneberg T, Thor D (2016) Deciphering and modulating G protein signalling in C. elegans using the DREADD technology. Sci Rep 6:28901. https://doi.org/10.1038/srep28901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Roth BL (2016) DREADDs for neuroscientists. Neuron 89(4):683–694. https://doi.org/10.1016/j.neuron.2016.01.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schild LC, Glauser DA (2015) Dual color neural activation and behavior control with Chrimson and CoChR in Caenorhabditis elegans. Genetics 200(4):1029–1034. https://doi.org/10.1534/genetics.115.177956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sieburth D, Madison JM, Kaplan JM (2007) PKC-1 regulates secretion of neuropeptides. Nat Neurosci 10(1):49–57. https://doi.org/10.1038/nn1810

    Article  CAS  PubMed  Google Scholar 

  52. Weissenberger S, Schultheis C, Liewald JF, Erbguth K, Nagel G, Gottschalk A (2011) PACalpha--an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans. J Neurochem 116(4):616–625. https://doi.org/10.1111/j.1471-4159.2010.07148.x

    Article  CAS  PubMed  Google Scholar 

  53. Zhang F, Prigge M, Beyriere F, Tsunoda SP, Mattis J, Yizhar O, Hegemann P, Deisseroth K (2008) Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 11(6):631–633. https://doi.org/10.1038/nn.2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Davis MW, Morton JJ, Carroll D, Jorgensen EM (2008) Gene activation using FLP recombinase in C. elegans. PLoS Genet 4(3):e1000028. https://doi.org/10.1371/journal.pgen.1000028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schmitt C, Schultheis C, Pokala N, Husson SJ, Liewald JF, Bargmann CI, Gottschalk A (2012) Specific expression of channelrhodopsin-2 in single neurons of Caenorhabditis elegans. PLoS One 7(8):e43164. https://doi.org/10.1371/journal.pone.0043164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guo ZV, Hart AC, Ramanathan S (2009) Optical interrogation of neural circuits in Caenorhabditis elegans. Nat Methods 6(12):891–896. https://doi.org/10.1038/nmeth.1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Leifer AM, Fang-Yen C, Gershow M, Alkema MJ, Samuel AD (2011) Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans. Nat Methods 8(2):147–152. https://doi.org/10.1038/nmeth.1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mello C, Fire A (1995) DNA transformation. Methods Cell Biol 48:451–482

    Article  CAS  PubMed  Google Scholar 

  59. Way JC, Wang L, Run JQ, Wang A (1991) The mec-3 gene contains cis-acting elements mediating positive and negative regulation in cells produced by asymmetric cell division in Caenorhabditis elegans. Genes Dev 5(12A):2199–2211

    Article  CAS  PubMed  Google Scholar 

  60. Praitis V, Casey E, Collar D, Austin J (2001) Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157(3):1217–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hobert O (2002) PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans. BioTechniques 32(4):728–730

    Article  CAS  PubMed  Google Scholar 

  62. Frokjaer-Jensen C, Davis MW, Hopkins CE, Newman BJ, Thummel JM, Olesen SP, Grunnet M, Jorgensen EM (2008) Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet 40(11):1375–1383. https://doi.org/10.1038/ng.248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Collier RJ (1975) Diphtheria toxin: mode of action and structure. Bacteriol Rev 39(1):54–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Armenti ST, Lohmer LL, Sherwood DR, Nance J (2014) Repurposing an endogenous degradation system for rapid and targeted depletion of C. elegans proteins. Development 141(23):4640–4647. https://doi.org/10.1242/dev.115048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Eickelbeck D, Rudack T, Tennigkeit SA, Surdin T, Karapinar R, Schwitalla JC, Mucher B, Shulman M, Scherlo M, Althoff P, Mark MD, Gerwert K, Herlitze S (2020) Lamprey Parapinopsin (“UVLamP”): a Bistable UV-sensitive Optogenetic switch for ultrafast control of GPCR pathways. Chembiochem 21(5):612–617. https://doi.org/10.1002/cbic.201900485

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Shai Shaham, Aakanksha Singhvi, In Hae Lee and Sean Wallace for comments and discussions on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menachem Katz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Katz, M. (2022). Genetic Methods for Cellular Manipulation in C. elegans. In: Haspel, G., Hart, A.C. (eds) C. elegans. Methods in Molecular Biology, vol 2468. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2181-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2181-3_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2180-6

  • Online ISBN: 978-1-0716-2181-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics