Skip to main content

Primer on Mathematical Modeling in C. elegans

  • Protocol
  • First Online:
C. elegans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2468))

  • 1216 Accesses

Abstract

Recently, applications of mathematical and computational models to biological processes have helped investigators to systematically interpret data, test hypotheses built on experimental data, generate new hypotheses, and guide the design of new experiments, protocols, and synthetic biological systems. Availability of diverse quantitative data is a prerequisite for successful mathematical modeling. The ability to acquire high-quality quantitative data for a broad range of biological processes and perform precise perturbation makes C. elegans an ideal model system for such studies. In this primer, we examine the general procedure of modeling biological systems and demonstrate this process using the heat-shock response in C. elegans as a case study. Our goal is to facilitate the initial discussion between worm biologists and their potential collaborators from quantitative disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meneely PM, Dahlberg CL, Rose JK (2019) Working with Worms: Caenorhabditis elegans as a model organism. Curr Protoc Essent Lab Tech 19:e35

    Article  Google Scholar 

  2. Moy TI, Conery AL, Larkins-Ford J et al (2009) High throughput screen for novel antimicrobials using a whole animal infection model. ACS Chem Biol 4:527–533

    Article  CAS  Google Scholar 

  3. San-Miguel A, Lu H (2005) Microfluidics as a tool for C. elegans research. WormBook. Pasadena, CA

    Google Scholar 

  4. Fisher J, Piterman N, Hajnal A et al (2007) Predictive modeling of signaling crosstalk during C. elegans vulval development. PLoS Comput Biol 3:e92

    Article  Google Scholar 

  5. Kuramochi M, Iwasaki Y (2010) Quantitative modeling of neuronal dynamics in C. elegans. In: Wong KW, Mendis BSU, Bouzerdoum A (eds) Neural information processing. Theory and algorithms. Springer, Berlin, pp 17–24

    Chapter  Google Scholar 

  6. Mirzakhalili E, Epureanu BI, Gourgou E (2018) A mathematical and computational model of the calcium dynamics in Caenorhabditis elegans ASH sensory neuron. PLoS One 13:e0201302

    Article  Google Scholar 

  7. Scholz M, Dinner AR, Levine E et al (2017) Stochastic feeding dynamics arise from the need for information and energy. Proc Natl Acad Sci U S A 114:9261

    Article  CAS  Google Scholar 

  8. Ding SS, Schumacher LJ, Javer AE et al (2019) Shared behavioral mechanisms underlie C. elegans aggregation and swarming. eLife 8:e43318

    Article  Google Scholar 

  9. Roberts WM, Augustine SB, Lawton KJ et al (2016) A stochastic neuronal model predicts random search behaviors at multiple spatial scales in C. elegans. eLife 5:e12572

    Article  Google Scholar 

  10. Mulla S (2019) Mathematical modelling of hypoxia and temperature signalling pathways in lifespan. http://publications.aston.ac.uk/id/eprint/41145/

  11. Soh Z, Sakamoto K, Suzuki M et al (2018) A computational model of internal representations of chemical gradients in environments for chemotaxis of Caenorhabditis elegans. Sci Rep 8:17190

    Article  Google Scholar 

  12. Cohen N, Denham JE (2019) Whole animal modeling: piecing together nematode locomotion. Curr Opin Syst Biol 13:150–160

    Article  Google Scholar 

  13. Neagu I, Levine E (2015) A primer on quantitative modeling. In: Biron D, Haspel G (eds) C. elegans. Humana Press, Totowa, NJ, pp 241–250

    Chapter  Google Scholar 

  14. Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266

    Article  CAS  Google Scholar 

  15. Anckar J, Sistonen L (2011) Regulation of H SF 1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 80:1089–1115

    Article  CAS  Google Scholar 

  16. Morimoto RI (2011) The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb Symp Quant Biol 76:91–99

    Article  CAS  Google Scholar 

  17. Dahlstrom E, Levine E (2019) Dynamics of heat shock detection and response in the intestine of Caenorhabditis elegans

    Google Scholar 

  18. Kurata H, El-Samad H, Iwasaki R et al (2006) Module-based analysis of robustness tradeoffs in the heat shock response system. PLoS Comput Biol 2:e59

    Article  Google Scholar 

  19. Magni S, Succurro A, Skupin A et al (2016) Dynamical modelling of the heat shock response in Chlamydomonas reinhardtii. bioRxiv 085555

    Google Scholar 

  20. Peper A, Grimbergen CA, Spaan JAE et al (1998) A mathematical model of the hsp70 regulation in the cell. Int J Hyperth 14:97–124

    Article  CAS  Google Scholar 

  21. Srivastava R, Peterson MS, Bentley WE (2001) Stochastic kinetic analysis of the Escherichia coli stress circuit using σ32-targeted antisense. Biotechnol Bioeng 75:120–129

    Article  CAS  Google Scholar 

  22. Zheng X, Krakowiak J, Patel N et al Dynamic control of Hsf1 during heat shock by a chaperone switch and phosphorylation. https://elifesciences.org/articles/18638

  23. Milo R, Jorgensen P, Moran U et al (2010) BioNumbers--the database of key numbers in molecular and cell biology. Nucleic Acids Res 38:D750–D753

    Article  CAS  Google Scholar 

  24. Leung K, Mohammadi A, Ryu WS et al (2016) Stereotypical escape behavior in Caenorhabditis elegans allows quantification of effective heat stimulus level. PLoS Comput Biol 12:e1005262

    Article  Google Scholar 

  25. Daniels BC, Ryu WS, Nemenman I (2019) Automated, predictive, and interpretable inference of Caenorhabditis elegans escape dynamics. Proc Natl Acad Sci U S A 116:7226–7231

    Article  CAS  Google Scholar 

  26. Mendenhall AR, Tedesco PM, Taylor LD et al (2012) Expression of a single-copy hsp-16.2 reporter predicts life span. J Gerontol A Biol Sci Med Sci 67(7):726–733

    Article  Google Scholar 

  27. Mendenhall AR, Tedesco PM, Sands B et al (2015) Single cell quantification of reporter gene expression in live adult Caenorhabditis elegans reveals reproducible cell-specific expression patterns and underlying biological variation. PLoS One 10:e0124289

    Article  Google Scholar 

  28. Seewald AK, Cypser J, Mendenhall A et al (2010) Quantifying phenotypic variation in isogenic Caenorhabditis elegans expressing Phsp-16.2::gfp by clustering 2D expression patterns. PLoS One 5:e11426

    Article  Google Scholar 

  29. Wentz JM, Mendenhall A, Bortz DM (2017) Pattern Formation in the Longevity-Related Expression of Heat Shock Protein-162 in Caenorhabditis elegans. ArXiv170603085 Q-Bio

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erel Levine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ranawade, A., Levine, E. (2022). Primer on Mathematical Modeling in C. elegans. In: Haspel, G., Hart, A.C. (eds) C. elegans. Methods in Molecular Biology, vol 2468. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2181-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2181-3_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2180-6

  • Online ISBN: 978-1-0716-2181-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics