Skip to main content

Recording and Quantifying C. elegans Behavior

  • Protocol
  • First Online:
C. elegans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2468))

Abstract

Studies of C. elegans behavior have been crucial in identifying genetic pathways that control nervous system development and function, as well as basic principles of neural circuit function. Modern analysis of C. elegans behavior commonly relies on video recordings of animals, followed by automated image analysis and behavior quantification. Here, we describe two methods for recording and quantifying C. elegans behavior: a single-worm tracking approach that provides high-resolution behavioral data for individual animals and a multi-worm tracking approach that allows for quantification of the behavior of many animals in parallel. These approaches should be useful to a wide range of researchers studying the nervous system and behavior of C. elegans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Egnor SER, Branson K (2016) Computational analysis of behavior. Annu Rev Neurosci 39:217–236. https://doi.org/10.1146/annurev-neuro-070815-013845

    Article  CAS  PubMed  Google Scholar 

  2. Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A 68:2112–2116. https://doi.org/10.1073/pnas.68.9.2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    Article  CAS  Google Scholar 

  4. Croll NA (1975) Components and patterns in the behaviour of the nematode Caenorhabditis elegans. J Zool 176:159–176. https://doi.org/10.1111/j.1469-7998.1975.tb03191.x

    Article  Google Scholar 

  5. Bargmann CI, Hartwieg E, Horvitz HR (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74:515–527. https://doi.org/10.1016/0092-8674(93)80053-H

    Article  CAS  PubMed  Google Scholar 

  6. McGrath PT, Rockman MV, Zimmer M et al (2009) Quantitative mapping of a digenic behavioral trait implicates globin variation in C. elegans sensory behaviors. Neuron 61:692–699. https://doi.org/10.1016/j.neuron.2009.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brown AEX, Yemini EI, Grundy LJ et al (2013) A dictionary of behavioral motifs reveals clusters of genes affecting Caenorhabditis elegans locomotion. Proc Natl Acad Sci U S A 110:791–796. https://doi.org/10.1073/pnas.1211447110

    Article  PubMed  Google Scholar 

  8. Stephens GJ, Johnson-Kerner B, Bialek W, Ryu WS (2008) Dimensionality and dynamics in the behavior of C. elegans. PLoS Comput Biol 4:e1000028. https://doi.org/10.1371/journal.pcbi.1000028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gray JM, Hill JJ, Bargmann CI (2005) A circuit for navigation in Caenorhabditis elegans. Proc Natl Acad Sci U S A 102:3184–3191. https://doi.org/10.1073/pnas.0409009101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Swierczek NA, Giles AC, Rankin CH, Kerr RA (2011) High-throughput behavioral analysis in C. elegans. Nat Methods 8:592–598. https://doi.org/10.1038/nmeth.1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pierce-Shimomura JT, Morse TM, Lockery SR (1999) The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis. J Neurosci 19:9557–9569. https://doi.org/10.1523/JNEUROSCI.19-21-09557.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Husson SJ (2012) Keeping track of worm trackers. WormBook 1–17. https://doi.org/10.1895/wormbook.1.156.1

  13. Datta SR, Anderson DJ, Branson K et al (2019) Computational neuroethology: a call to action. Neuron 104:11–24. https://doi.org/10.1016/j.neuron.2019.09.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cermak N, Yu SK, Clark R et al (2020) Whole-organism behavioral profiling reveals a role for dopamine in state-dependent motor program coupling in C. elegans. eLife 9:e57093. https://doi.org/10.7554/eLife.57093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Faumont S, Lockery SR (2006) The awake behaving worm: simultaneous imaging of neuronal activity and behavior in intact animals at millimeter scale. J Neurophysiol 95:1976–1981. https://doi.org/10.1152/jn.01050.2005

    Article  PubMed  Google Scholar 

  16. Yemini E, Jucikas T, Grundy LJ et al (2013) A database of Caenorhabditis elegans behavioral phenotypes. Nat Methods 10:877–879. https://doi.org/10.1038/nmeth.2560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ramot D, Johnson BE, Berry TL et al (2008) The parallel worm tracker: a platform for measuring average speed and drug-induced paralysis in nematodes. PLoS One 3:e2208. https://doi.org/10.1371/journal.pone.0002208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Flavell SW, Pokala N, Macosko EZ et al (2013) Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C. elegans. Cell 154:1023–1035. https://doi.org/10.1016/j.cell.2013.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Calhoun AJ, Tong A, Pokala N et al (2015) Neural mechanisms for evaluating environmental variability in Caenorhabditis elegans. Neuron 86:428–441. https://doi.org/10.1016/j.neuron.2015.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rhoades JL, Nelson JC, Nwabudike I et al (2019) ASICs mediate food responses in an enteric serotonergic neuron that controls foraging behaviors. Cell 176:85–97.e14. https://doi.org/10.1016/j.cell.2018.11.023

    Article  CAS  PubMed  Google Scholar 

  21. López-Cruz A, Sordillo A, Pokala N et al (2019) Parallel multimodal circuits control an innate foraging behavior. Neuron 102:407–419.e8. https://doi.org/10.1016/j.neuron.2019.01.053

    Article  CAS  PubMed  Google Scholar 

  22. Jin X, Pokala N, Bargmann CI (2016) Distinct circuits for the formation and retrieval of an imprinted olfactory memory. Cell 164:632–643. https://doi.org/10.1016/j.cell.2016.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pokala N, Liu Q, Gordus A, Bargmann CI (2014) Inducible and titratable silencing of Caenorhabditis elegans neurons in vivo with histamine-gated chloride channels. Proc Natl Acad Sci U S A 111:2770–2775. https://doi.org/10.1073/pnas.1400615111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gordus A, Pokala N, Levy S et al (2015) Feedback from network states generates variability in a probabilistic olfactory circuit. Cell 161:215–227. https://doi.org/10.1016/j.cell.2015.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Albrecht DR, Bargmann CI (2011) High-content behavioral analysis of Caenorhabditis elegans in precise spatiotemporal chemical environments. Nat Methods 8:599–605. https://doi.org/10.1038/nmeth.1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stiernagle T (2006) Maintenance of C. elegans. WormBook. https://doi.org/10.1895/wormbook.1.101.1

  27. Hilliard MA, Bergamasco C, Arbucci S et al (2004) Worms taste bitter: ASH neurons, QUI-1, GPA-3 and ODR-3 mediate quinine avoidance in Caenorhabditis elegans. EMBO J 23:1101–1111. https://doi.org/10.1038/sj.emboj.7600107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim DH, Flavell SW (2020) Host-microbe interactions and the behavior of Caenorhabditis elegans. J Neurogenet 34(3-4):500–509. https://doi.org/10.1080/01677063.2020.1802724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Navin Pokala or Steven W. Flavell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pokala, N., Flavell, S.W. (2022). Recording and Quantifying C. elegans Behavior. In: Haspel, G., Hart, A.C. (eds) C. elegans. Methods in Molecular Biology, vol 2468. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2181-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2181-3_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2180-6

  • Online ISBN: 978-1-0716-2181-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics