Skip to main content

Gas Exchange Measurements in Systemic Signaling Studies

  • Protocol
  • First Online:
Abscisic Acid

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2462))

  • 540 Accesses

Abstract

Different parts of a plant can be simultaneously exposed to very different conditions, for example a leaf moving in and out of shadow. In addition to local responses, transmission of information between different tissues and organs is thought to affect the coordination of overall responses to changing environmental conditions. An important adaptive role is played by the stomata, which regulate the evaporation of water vapor and supply of CO2 for photosynthesis. Here, we describe a method to study the effect of distally triggered systemic signals on stomatal conductance. The experimental set up, consisting of a growth chamber and a leaf gas exchange measuring system, enables time-resolved measurements on an intact leaf while maintaining a full control over the environmental conditions of the measured leaf and the whole seedling. The method can be used as a powerful tool to study short- and long-term stomatal responses to changes in different environmental variables, such as light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Merilo E, Laanemets K, Hu H et al (2013) PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness-, and CO2-induced stomatal regulation. Plant Physiol 162:1652–1668. https://doi.org/10.1104/pp.113.220608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hashimoto M, Negi J, Young J et al (2006) Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nat Cell Biol 8:391–397. https://doi.org/10.1038/ncb1387

    Article  CAS  PubMed  Google Scholar 

  3. Hõrak H, Sierla M, Tõldsepp K et al (2016) A dominant mutation in the HT1 kinase uncovers roles of MAP kinases and GHR1 in CO2-induced stomatal closure. Plant Cell 28:2493–2509. https://doi.org/10.1105/tpc.16.00131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Karpinski S, Reynolds H, Karpinska B et al (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657. https://doi.org/10.1126/science.284.5414.654

    Article  CAS  PubMed  Google Scholar 

  5. Suzuki N, Miller G, Salazar C et al (2013) Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. Plant Cell 25:3553–3569. https://doi.org/10.1105/tpc.113.114595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miller G, Schlauch K, Tam R et al (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2:ra45. https://doi.org/10.1126/scisignal.2000448

    Article  PubMed  Google Scholar 

  7. Choi W-G, Toyota M, Kim S-H et al (2014) Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc Natl Acad Sci 111:6497–6502. https://doi.org/10.1073/pnas.1319955111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Szechyńska-Hebda M, Kruk J, Górecka M et al (2010) Evidence for light wavelength-specific photoelectrophysiological signaling and memory of excess light episodes in Arabidopsis. Plant Cell 22:2201–2218. https://doi.org/10.1105/tpc.109.069302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koziolek C, Grams TEE, Schreiber U et al (2004) Transient knockout of photosynthesis mediated by electrical signals. New Phytol 161:715–722. https://doi.org/10.1111/j.1469-8137.2004.00985.x

    Article  CAS  PubMed  Google Scholar 

  10. Hlaváčková V, Krchňák P, Nauš J et al (2006) Electrical and chemical signals involved in short-term systemic photosynthetic responses of tobacco plants to local burning. Planta 225:235–244. https://doi.org/10.1007/s00425-006-0325-x

    Article  CAS  PubMed  Google Scholar 

  11. Kaiser H, Grams TEE (2006) Rapid hydropassive opening and subsequent active stomatal closure follow heat-induced electrical signals in Mimosa pudica. J Exp Bot 57:2087–2092. https://doi.org/10.1093/jxb/erj165

    Article  CAS  PubMed  Google Scholar 

  12. Grams TEE, Lautner S, Felle HH et al (2009) Heat-induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf. Plant Cell Environ 32:319–326. https://doi.org/10.1111/j.1365-3040.2008.01922.x

    Article  CAS  PubMed  Google Scholar 

  13. Gallé A, Lautner S, Flexas J et al (2013) Photosynthetic responses of soybean (Glycine max L.) to heat-induced electrical signalling are predominantly governed by modifications of mesophyll conductance for CO2. Plant Cell Environ 36:542–552. https://doi.org/10.1111/j.1365-3040.2012.02594.x

    Article  CAS  PubMed  Google Scholar 

  14. Devireddy AR, Zandalinas SI, Gómez-Cadenas A et al (2018) Coordinating the overall stomatal response of plants: rapid leaf-to-leaf communication during light stress. Sci Signal 11:eaam9514. https://doi.org/10.1126/scisignal.aam9514

    Article  CAS  PubMed  Google Scholar 

  15. Devireddy AR, Arbogast J, Mittler R (2020) Coordinated and rapid whole-plant systemic stomatal responses. New Phytol 225:21–25. https://doi.org/10.1111/nph.16143

    Article  PubMed  Google Scholar 

  16. Ehonen S, Hölttä T, Kangasjärvi J (2020) Systemic signaling in the regulation of stomatal conductance. Plant Physiol 182:1829–1832. https://doi.org/10.1104/pp.19.01543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zandalinas SI, Cohen IH, Fritschi FB, Mittler R (2020) Coordinated systemic stomatal responses in soybean. Plant Physiol 183:1428–1431. https://doi.org/10.1104/pp.20.00511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hõrak H, Fountain L, Dunn JA et al (2020) Dynamic thermal imaging confirms local but not fast systemic ABA responses. Plant Cell Environ 44:885–899. https://doi.org/10.1111/pce.13973

    Article  CAS  PubMed  Google Scholar 

  19. Farmer E, Farmer E, Mousavi S, Lenglet A (2013) Leaf numbering for experiments on long distance signalling in Arabidopsis. Protoc Exch. https://doi.org/10.1038/protex.2013.071

  20. Vahisalu T, Puzõrjova I, Brosché M et al (2010) Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. Plant J 62:442–453. https://doi.org/10.1111/j.1365-313X.2010.04159.x

    Article  CAS  PubMed  Google Scholar 

  21. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. https://doi.org/10.1111/j.2041-210x.2009.00001.x

    Article  Google Scholar 

  22. Wood SN (2006) Generalized additive models: an introduction with R, 2nd edn. Chapman & Hall/CRC, Boca Raton, FL

    Book  Google Scholar 

  23. Rose NL, Yang H, Turner SD, Simpson GL (2012) An assessment of the mechanisms for the transfer of lead and mercury from atmospherically contaminated organic soils to lake sediments with particular reference to Scotland, UK. Geochim Cosmochim Acta 82:113–135. https://doi.org/10.1016/J.GCA.2010.12.026

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mikael Brosché and Pedro Aphalo for fruitful discussions and critical comments on the manuscript and Tuomas Puukko for providing the pictures. The authors were supported by the Academy of Finland (grants 333703 and 336359 to M.S.), Ella and Georg Ehrnrooth Foundation (M.S.), Finnish Cultural Foundation (M.S.), and Alfred Kordelin Foundation (S.E.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sanna Ehonen or Maija Sierla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ehonen, S., Sierla, M. (2022). Gas Exchange Measurements in Systemic Signaling Studies. In: Yoshida, T. (eds) Abscisic Acid. Methods in Molecular Biology, vol 2462. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2156-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2156-1_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2155-4

  • Online ISBN: 978-1-0716-2156-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics