Skip to main content

The dCypher Approach to Interrogate Chromatin Reader Activity Against Posttranslational Modification-Defined Histone Peptides and Nucleosomes

  • Protocol
  • First Online:
Chromatin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2458))

Abstract

Bulk chromatin encompasses complex sets of histone posttranslational modifications (PTMs) that recruit (or repel) the diverse reader domains of Chromatin-Associated Proteins (CAPs) to regulate genome processes (e.g., gene expression, DNA repair, mitotic transmission). The binding preference of reader domains for their PTMs mediates localization and functional output, and are often dysregulated in disease. As such, understanding chromatin interactions may lead to novel therapeutic strategies, However the immense chemical diversity of histone PTMs, combined with low-throughput, variable, and nonquantitative methods, has defied accurate CAP characterization. This chapter provides a detailed protocol for dCypher, a novel approach for the rapid, quantitative interrogation of CAPs (as mono- or multivalent Queries) against large panels (10s to 100s) of PTM-defined histone peptide and semisynthetic nucleosomes (the potential Targets). We describe key optimization steps and controls to generate robust binding data. Further, we compare the utility of histone peptide and nucleosome substrates in CAP studies, outlining important considerations in experimental design and data interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84(6):843–851. https://doi.org/10.1016/s0092-8674(00)81063-6

    Article  CAS  PubMed  Google Scholar 

  2. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128(4):707–719. https://doi.org/10.1016/j.cell.2007.01.015

    Article  CAS  PubMed  Google Scholar 

  3. Utley RT, Ikeda K, Grant PA, Cote J, Steger DJ, Eberharter A, John S, Workman JL (1998) Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394(6692):498–502. https://doi.org/10.1038/28886

    Article  CAS  PubMed  Google Scholar 

  4. Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272(5260):408–411. https://doi.org/10.1126/science.272.5260.408

    Article  CAS  PubMed  Google Scholar 

  5. Mirabella AC, Foster BM, Bartke T (2016) Chromatin deregulation in disease. Chromosoma 125(1):75–93. https://doi.org/10.1007/s00412-015-0530-0

    Article  CAS  PubMed  Google Scholar 

  6. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057–1068. https://doi.org/10.1038/nbt.1685

    Article  CAS  PubMed  Google Scholar 

  7. Valencia AM, Kadoch C (2019) Chromatin regulatory mechanisms and therapeutic opportunities in cancer. Nat Cell Biol 21(2):152–161. https://doi.org/10.1038/s41556-018-0258-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080. https://doi.org/10.1126/science.1063127

    Article  CAS  PubMed  Google Scholar 

  9. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45. https://doi.org/10.1038/47412

    Article  CAS  PubMed  Google Scholar 

  10. Lee JS, Smith E, Shilatifard A (2010) The language of histone crosstalk. Cell 142(5):682–685. https://doi.org/10.1016/j.cell.2010.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smith E, Shilatifard A (2010) The chromatin signaling pathway: diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes. Mol Cell 40(5):689–701. https://doi.org/10.1016/j.molcel.2010.11.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jacobson RH, Ladurner AG, King DS, Tjian R (2000) Structure and function of a human TAFII250 double bromodomain module. Science 288(5470):1422–1425. https://doi.org/10.1126/science.288.5470.1422

    Article  CAS  PubMed  Google Scholar 

  13. Dey A, Chitsaz F, Abbasi A, Misteli T, Ozato K (2003) The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci U S A 100(15):8758–8763. https://doi.org/10.1073/pnas.1433065100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM (1999) Structure and ligand of a histone acetyltransferase bromodomain. Nature 399(6735):491–496. https://doi.org/10.1038/20974

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Wen H, Xi Y, Tanaka K, Wang H, Peng D, Ren Y, Jin Q, Dent SY, Li W, Li H, Shi X (2014) AF9 YEATS domain links histone acetylation to DOT1L-mediated H3K79 methylation. Cell 159(3):558–571. https://doi.org/10.1016/j.cell.2014.09.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Andrews FH, Shinsky SA, Shanle EK, Bridgers JB, Gest A, Tsun IK, Krajewski K, Shi X, Strahl BD, Kutateladze TG (2016) The Taf14 YEATS domain is a reader of histone crotonylation. Nat Chem Biol 12(6):396–398. https://doi.org/10.1038/nchembio.2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li Y, Sabari BR, Panchenko T, Wen H, Zhao D, Guan H, Wan L, Huang H, Tang Z, Zhao Y, Roeder RG, Shi X, Allis CD, Li H (2016) Molecular coupling of histone crotonylation and active transcription by AF9 yeats domain. Mol Cell 62(2):181–193. https://doi.org/10.1016/j.molcel.2016.03.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Botuyan MV, Lee J, Ward IM, Kim JE, Thompson JR, Chen J, Mer G (2006) Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127(7):1361–1373. https://doi.org/10.1016/j.cell.2006.10.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Musselman CA, Avvakumov N, Watanabe R, Abraham CG, Lalonde ME, Hong Z, Allen C, Roy S, Nunez JK, Nickoloff J, Kulesza CA, Yasui A, Cote J, Kutateladze TG (2012) Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1. Nat Struct Mol Biol 19(12):1266–1272. https://doi.org/10.1038/nsmb.2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410(6824):120–124. https://doi.org/10.1038/35065138

    Article  CAS  PubMed  Google Scholar 

  21. Pray-Grant MG, Daniel JA, Schieltz D, Yates JR 3rd, Grant PA (2005) Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 433(7024):434–438. https://doi.org/10.1038/nature03242

    Article  CAS  PubMed  Google Scholar 

  22. Dhayalan A, Rajavelu A, Rathert P, Tamas R, Jurkowska RZ, Ragozin S, Jeltsch A (2010) The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J Biol Chem 285(34):26114–26120. https://doi.org/10.1074/jbc.M109.089433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weinberg DN, Rosenbaum P, Chen X, Barrows D, Horth C, Marunde MR, Popova IK, Gillespie ZB, Keogh M-C, Lu C, Majewski J, Allis CD (2021) Two competing mechanisms of DNMT3A recruitment regulate the dynamics of de novo DNA methylation at PRC1-targeted CpG islands. Nat Genet 53(6):794–800. https://doi.org/10.1038/s41588-021-00856-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wilson MD, Benlekbir S, Fradet-Turcotte A, Sherker A, Julien JP, McEwan A, Noordermeer SM, Sicheri F, Rubinstein JL, Durocher D (2016) The structural basis of modified nucleosome recognition by 53BP1. Nature 536(7614):100–103. https://doi.org/10.1038/nature18951

    Article  CAS  PubMed  Google Scholar 

  25. Arrowsmith CH, Schapira M (2019) Targeting non-bromodomain chromatin readers. Nat Struct Mol Biol 26(10):863–869. https://doi.org/10.1038/s41594-019-0290-2

    Article  CAS  PubMed  Google Scholar 

  26. Dawson MA (2017) The cancer epigenome: concepts, challenges, and therapeutic opportunities. Science 355(6330):1147–1152. https://doi.org/10.1126/science.aam7304

    Article  CAS  PubMed  Google Scholar 

  27. Zaware N, Zhou MM (2017) Chemical modulators for epigenome reader domains as emerging epigenetic therapies for cancer and inflammation. Curr Opin Chem Biol 39:116–125. https://doi.org/10.1016/j.cbpa.2017.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang H, Lin S, Garcia BA, Zhao Y (2015) Quantitative proteomic analysis of histone modifications. Chem Rev 115(6):2376–2418. https://doi.org/10.1021/cr500491u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Garske AL, Oliver SS, Wagner EK, Musselman CA, LeRoy G, Garcia BA, Kutateladze TG, Denu JM (2010) Combinatorial profiling of chromatin binding modules reveals multisite discrimination. Nat Chem Biol 6(4):283–290. https://doi.org/10.1038/nchembio.319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tauber M, Fischle W (2015) Conserved linker regions and their regulation determine multiple chromatin-binding modes of UHRF1. Nucleus 6(2):123–132. https://doi.org/10.1080/19491034.2015.1026022

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rothbart SB, Krajewski K, Strahl BD, Fuchs SM (2012) Peptide microarrays to interrogate the “histone code”. Methods Enzymol 512:107–135. https://doi.org/10.1016/B978-0-12-391940-3.00006-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bua DJ, Kuo AJ, Cheung P, Liu CL, Migliori V, Espejo A, Casadio F, Bassi C, Amati B, Bedford MT, Guccione E, Gozani O (2009) Epigenome microarray platform for proteome-wide dissection of chromatin-signaling networks. PLoS One 4(8):e6789. https://doi.org/10.1371/journal.pone.0006789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matthews AG, Kuo AJ, Ramon-Maiques S, Han S, Champagne KS, Ivanov D, Gallardo M, Carney D, Cheung P, Ciccone DN, Walter KL, Utz PJ, Shi Y, Kutateladze TG, Yang W, Gozani O, Oettinger MA (2007) RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 450(7172):1106–1110. https://doi.org/10.1038/nature06431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mauser R, Jeltsch A (2019) Application of modified histone peptide arrays in chromatin research. Arch Biochem Biophys 661:31–38. https://doi.org/10.1016/j.abb.2018.10.019

    Article  CAS  PubMed  Google Scholar 

  35. Rathert P, Dhayalan A, Murakami M, Zhang X, Tamas R, Jurkowska R, Komatsu Y, Shinkai Y, Cheng X, Jeltsch A (2008) Protein lysine methyltransferase G9a acts on non-histone targets. Nat Chem Biol 4(6):344–346. https://doi.org/10.1038/nchembio.88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kudithipudi S, Lungu C, Rathert P, Happel N, Jeltsch A (2014) Substrate specificity analysis and novel substrates of the protein lysine methyltransferase NSD1. Chem Biol 21(2):226–237. https://doi.org/10.1016/j.chembiol.2013.10.016

    Article  CAS  PubMed  Google Scholar 

  37. Shah RN, Grzybowski AT, Cornett EM, Johnstone AL, Dickson BM, Boone BA, Cheek MA, Cowles MW, Maryanski D, Meiners MJ, Tiedemann RL, Vaughan RM, Arora N, Sun ZW, Rothbart SB, Keogh MC, Ruthenburg AJ (2018) Examining the roles of H3K4 methylation states with systematically characterized antibodies. Mol Cell 72(1):162–177 e167. https://doi.org/10.1016/j.molcel.2018.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ghoneim M, Fuchs HA, Musselman CA (2021) Histone tail conformations: a fuzzy affair with DNA. Trends Biochem Sci 46(7):564–578. https://doi.org/10.1016/j.tibs.2020.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morrison EA, Sanchez JC, Ronan JL, Farrell DP, Varzavand K, Johnson JK, Gu BX, Crabtree GR, Musselman CA (2017) DNA binding drives the association of BRG1/hBRM bromodomains with nucleosomes. Nat Commun 8:16080. https://doi.org/10.1038/ncomms16080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Morrison EA, Bowerman S, Sylvers KL, Wereszczynski J, Musselman CA (2018) The conformation of the histone H3 tail inhibits association of the BPTF PHD finger with the nucleosome. elife 7:e31481. https://doi.org/10.7554/eLife.31481

    Article  PubMed  PubMed Central  Google Scholar 

  41. Stutzer A, Liokatis S, Kiesel A, Schwarzer D, Sprangers R, Soding J, Selenko P, Fischle W (2016) Modulations of DNA contacts by linker histones and post-translational modifications determine the mobility and modifiability of nucleosomal H3 tails. Mol Cell 61(2):247–259. https://doi.org/10.1016/j.molcel.2015.12.015

    Article  CAS  PubMed  Google Scholar 

  42. Li Y, Trojer P, Xu CF, Cheung P, Kuo A, Drury WJ 3rd, Qiao Q, Neubert TA, Xu RM, Gozani O, Reinberg D (2009) The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate. J Biol Chem 284(49):34283–34295. https://doi.org/10.1074/jbc.M109.034462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sankaran SM, Wilkinson AW, Elias JE, Gozani O (2016) A PWWP domain of histone-lysine N-methyltransferase NSD2 binds to dimethylated Lys-36 of histone H3 and regulates NSD2 function at chromatin. J Biol Chem 291(16):8465–8474. https://doi.org/10.1074/jbc.M116.720748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vermeulen M, Eberl HC, Matarese F, Marks H, Denissov S, Butter F, Lee KK, Olsen JV, Hyman AA, Stunnenberg HG, Mann M (2010) Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142(6):967–980. https://doi.org/10.1016/j.cell.2010.08.020

    Article  CAS  PubMed  Google Scholar 

  45. Qin S, Min J (2014) Structure and function of the nucleosome-binding PWWP domain. Trends Biochem Sci 39(11):536–547. https://doi.org/10.1016/j.tibs.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  46. McGinty RK, Tan S (2016) Recognition of the nucleosome by chromatin factors and enzymes. Curr Opin Struct Biol 37:54–61. https://doi.org/10.1016/j.sbi.2015.11.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Skrajna A, Goldfarb D, Kedziora KM, Cousins EM, Grant GD, Spangler CJ, Barbour EH, Yan X, Hathaway NA, Brown NG, Cook JG, Major MB, McGinty RK (2020) Comprehensive nucleosome interactome screen establishes fundamental principles of nucleosome binding. Nucleic Acids Res 48(17):9415–9432. https://doi.org/10.1093/nar/gkaa544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shi YJ, Matson C, Lan F, Iwase S, Baba T, Shi Y (2005) Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell 19(6):857–864. https://doi.org/10.1016/j.molcel.2005.08.027

    Article  CAS  PubMed  Google Scholar 

  49. Yang M, Gocke CB, Luo X, Borek D, Tomchick DR, Machius M, Otwinowski Z, Yu H (2006) Structural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase. Mol Cell 23(3):377–387. https://doi.org/10.1016/j.molcel.2006.07.012

    Article  CAS  PubMed  Google Scholar 

  50. Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K, Zhang Y (2002) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12(12):1052–1058. https://doi.org/10.1016/s0960-9822(02)00901-6

    Article  CAS  PubMed  Google Scholar 

  51. Strelow JM, Xiao M, Cavitt RN, Fite NC, Margolis BJ, Park KJ (2016) The use of nucleosome substrates improves binding of SAM analogs to SETD8. J Biomol Screen 21(8):786–794. https://doi.org/10.1177/1087057116656596

    Article  CAS  PubMed  Google Scholar 

  52. Rothbart SB, Strahl BD (2014) Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 1839(8):627–643. https://doi.org/10.1016/j.bbagrm.2014.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Andrews FH, Strahl BD, Kutateladze TG (2016) Insights into newly discovered marks and readers of epigenetic information. Nat Chem Biol 12(9):662–668. https://doi.org/10.1038/nchembio.2149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Weinberg DN, Papillon-Cavanagh S, Chen H, Yue Y, Chen X, Rajagopalan KN, Horth C, McGuire JT, Xu X, Nikbakht H, Lemiesz AE, Marchione DM, Marunde MR, Meiners MJ, Cheek MA, Keogh MC, Bareke E, Djedid A, Harutyunyan AS, Jabado N, Garcia BA, Li H, Allis CD, Majewski J, Lu C (2019) The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature 573(7773):281–286. https://doi.org/10.1038/s41586-019-1534-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jain K, Fraser CS, Marunde MR, Parker MM, Sagum C, Burg JM, Hall N, Popova IK, Rodriguez KL, Vaidya A, Krajewski K, Keogh MC, Bedford MT, Strahl BD (2020) Characterization of the plant homeodomain (PHD) reader family for their histone tail interactions. Epigenetics Chromatin 13(1):3. https://doi.org/10.1186/s13072-020-0328-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lloyd JT, McLaughlin K, Lubula MY, Gay JC, Dest A, Gao C, Phillips M, Tonelli M, Cornilescu G, Marunde MR, Evans CM, Boyson SP, Carlson S, Keogh MC, Markley JL, Frietze S, Glass KC (2020) Structural insights into the recognition of mono- and diacetylated histones by the ATAD2B bromodomain. J Med Chem 63(21):12799–12813. https://doi.org/10.1021/acs.jmedchem.0c01178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dilworth D, Hanley RP, Ferreira de Freitas R, Allali-Hassani A, Zhou M, Mehta N, Marunde MR, Ackloo S, Carvalho Machado RA, Khalili Yazdi A, Owens DDG, Vu V, Nie DY, Alqazzaz M, Marcon E, Li F, Chau I, Bolotokova A, Qin S, Lei M, Liu Y, Szewczyk MM, Dong A, Kazemzadeh S, Abramyan T, Popova IK, Hall NW, Meiners MJ, Cheek MA, Gibson E, Kireev D, Greenblatt JF, Keogh MC, Min J, Brown PJ, Vedadi M, Arrowsmith CH, Barsyte-Lovejoy D, James LI, Schapira M (2021) Pharmacological targeting of a PWWP domain demonstrates cooperative control of NSD2 localization. Nat Chem Biol. https://doi.org/10.1038/s41589-021-00898-0. PMID: 34782742

  58. Kim J, Daniel J, Espejo A, Lake A, Krishna M, Xia L, Zhang Y, Bedford MT (2006) Tudor, MBT and chromo domains gauge the degree of lysine methylation. EMBO Rep 7(4):397–403. https://doi.org/10.1038/sj.embor.7400625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rondelet G, Dal Maso T, Willems L, Wouters J (2016) Structural basis for recognition of histone H3K36me3 nucleosome by human de novo DNA methyltransferases 3A and 3B. J Struct Biol 194(3):357–367. https://doi.org/10.1016/j.jsb.2016.03.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by US National Institutes of Health (NIH) grants (R44GM116584, R44GM117683 and R44CA214076) to EpiCypher.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael-C. Keogh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Marunde, M.R., Popova, I.K., Weinzapfel, E.N., Keogh, MC. (2022). The dCypher Approach to Interrogate Chromatin Reader Activity Against Posttranslational Modification-Defined Histone Peptides and Nucleosomes. In: Horsfield, J., Marsman, J. (eds) Chromatin. Methods in Molecular Biology, vol 2458. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2140-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2140-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2139-4

  • Online ISBN: 978-1-0716-2140-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics